
1. de Rham cohomology and Gauss-Manin connection

Let X a smooth separated scheme of finite type over a Noetherian ring Spec(R), then the sheaf
of Kahler differentials is a locally free quasi-coherent module Ω1

X/R. The derivation d defines the

complex

Ω•
X/R : 0 → OX → Ω1

X/R → Ω2
X/R → · · ·

and the cohomology of the complex obtained applying the functor Γ = Γ(X,−) takes the name of
de Rham cohomology HdR(X/R). Consider now the relative case π : X → S smooth morphism of
varieties over a field k. Then we can consider the sheaf of relative differentials Ω•

X/S = Ω•
X/k/π

∗Ω•
S/k

and define the relative de Rham cohomology H•
dR(X/S) as the right derived hypercomology

Hq
dR(X/S) = Rq π∗(Ω

•
X/S).

From the short exact sequence defining the relative differentials

0 → π∗Ω1
S/k → Ω1

X/k → Ω1
X/S → 0

and using the fact that the sheafs are locally free, we obtain a filtration

Ω•
X/k = F 0Ω•

X/k ⊇ F 1Ω•
X/k ⊇ F 2Ω•

X/k ⊇ · · ·

with

F iΩ•
X/k/F

i+1Ω•
X/k = π∗Ωi

S/k ⊗OX
Ω•−i

X/S

The fact that the sheafs are locally free implies that there is a trivializing cover of affine schemes
{Ui}i where

Ω1
X/k|Ui

∼= π∗Ω1
S/k|Ui

⊕ Ω1
X/S|Ui

and then taking exterior powers we obtain

Ωn
X/k|Ui

∼=
n⊕

i=0

(
π∗Ωi

S/k|Ui
⊗ Ωn−i

X/S|Ui

)
.

The filtration is then locally given by

F jΩn
X/k|Ui

=

n−j⊕
i=0

(
π∗Ωi

S/k|Ui
⊗ Ωn−i

X/S|Ui

)
.

Since the relative de Rham sheaf is defined to be the sheaf associated to the presheaf that locally
assigns

U 7→ Hq(π−1(U),ΩX/S|π−1(U))

we can then assume S = Spec(R) to be affine and define the Gauss-Manin connection locally.
Considering the spectral sequence Ep,q

r associated to the filtration we have that the first page is
given by

Ω2
X/S π∗Ω1

S/k ⊗OX
Ω2

X/S π∗Ω2
S/k ⊗OX

Ω2
X/S π∗Ω3

S/k ⊗OX
Ω2

X/S

Ω1
X/S π∗Ω1

S/k ⊗OX
Ω1

X/S π∗Ω2
S/k ⊗OX

Ω1
X/S π∗Ω3

S/k ⊗OX
Ω1

X/S

OX π∗Ω1
S/k π∗Ω2

S/k π∗Ω3
S/k

0 0 0 0

The second page is given by
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0 H2
dR(X/R) Ω1

R/k ⊗R H2
dR(X/R) Ω2

R/k ⊗R H2
dR(X/R) Ω3

R/k ⊗R H2
dR(X/R)

0 H1
dR(X/R) Ω1

R/k ⊗R H1
dR(X/R) Ω2

R/k ⊗R H1
dR(X/R) Ω3

R/k ⊗R H1
dR(X/R)

0 H0
dR(X/R) Ω1

R/k ⊗R H0
dR(X/R) Ω2

R/k ⊗R H0
dR(X/R) Ω3

R/k ⊗R H0
dR(X/R)

2. Gauss-Manin connection for family of Elliptic Curves

Consider the family of elliptic curves E : y2 = x3 − t over S = Spec(C[t, t−1]). Now recall that a
basis for the de Rham cohomology of an elliptic curve is given by

H1
dR(E/S) = ⟨ω, η⟩

In particular we have

ω =
dx

y
, η =

xdx

y
.

Given the equation y2 = x3 − t we have that Ω1
E/S is a free R-module where

2ydy − 3x2dx = 0.

Taking ω = 2x
3t dy −

y
t dx we can observe that{

dx = yω,

dy = 3x2

2 ω

but in the full module Ω1
E/C we have that the relation lifts to

2ydy − 3x2dx+ dt = 0.

In particular the previous relations become{
dx = yω − x

3tdt,

dy = 3x2

2 ω − y
2tdt.

From this description we deduce the following relations between 2-forms
dx ∧ dt = yω ∧ dt,

dy ∧ dt = 3x2

2 ω ∧ dt,

dx ∧ dy = 1
2ω ∧ dt.

We can then further differentiate ω in this space obtaining

dω =
2

3t
dx ∧ dy − 2x

3t2
dt ∧ dy − 1

t
dy ∧ dx+

y

t2
dt ∧ dx =

=

(
1

3t
+

x3

t2
+

1

2t
− y2

t2

)
ω ∧ dt =

= −1

6
ω ∧ dt

The Gauss-Manin connection is the given by

∇(ω) = − 1

6t
ω ⊗ dt.

Analogously we can proceed to compute the differential of xω in ΩE/C2

d(xω) = dx ∧ ω + xdω =
2x

3t
dx ∧ dy − 1

6t
xω ∧ dt =

1

6t
xω ∧ dt.
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Again the Gauss-Manin connection in this case is given by

∇(xω) =

(
1

6t
xω

)
⊗ dt.

With respect to the basis ω, xω we then have that the connection ∇ is given by

∇t =

(
−1/6t 0

0 1/6t

)
.

Since we are working over C, we can use the de Rham Theorem and shift our point of view on
the connection from differential forms to homotopy theory. Recall that we have a perfect pairing
given by

H1
dR(Et,C)×H1(Et,R) −→ C

(ω, δ) 7−→
∫
δ

ω

The fibers of the relative de Rham sheaf HdR(E/S) are equal to the 2-dimensional vector space
H1

dR(Et,C). The Gauss-Manin connection gives then a way to understand how to go from fiber to
fiber. For a choice of t, we can picture the elliptic curve in the fiber of t using the double-sheet
visualization given by the 2:1 map on the x coordinate

Et(C) → P1(C)
(x, y) 7→ x

Consider a basis for homology given by the paths α, β in the picture where the solid arrows mean
that the path is taken only over one sheet while the dotted ones pass to the other sheet. We then
have

H1(Et,Z) = Zα+ Zβ.

In order to see that α, β form a basis for the homology, we can use the intersection pairing and see
that ⟨α, β⟩ = 1.

In order to understand how the 1-chains change from fiber to fiber, we can compute their period,
namely ∫

α

ω,

∫
α

xω,

∫
β

ω,

∫
β

xω.

(1) ∫
α

ω = 2

∫ ζ3
3√t

ζ2
3

3√t

dx√
x3 − t

(2) ∫
α

ω = 2

∫ ζ3
3√t

ζ2
3

3√t

xdx√
x3 − t
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(3) ∫
β

ω = 2

∫ 3√t

ζ2
3

3√t

dx√
x3 − t

(4) ∫
β

ω = 2

∫ 3√t

ζ2
3

3√t

xdx√
x3 − t

For the path α consider the change of variables

x(z) = ζ23
3
√
t+ i

√
3

3
√
t · z

we then obtain

ωα =

∫
α

ω = 2

√
it−1/6

4
√
3

∫ 1

0

dz√
z(z − 1)(z + ζ3)

ηα =

∫
α

xω = 2

√
it1/6

4
√
3

∫ 1

0

(ζ23 + i
√
3z)dz√

z(z − 1)(z + ζ3)

ωβ =

∫
β

ω = 2

√
it−1/6

4
√
3

∫ −ζ3

0

dz√
z(z − 1)(z + ζ3)

ηβ =

∫
β

xω = 2

√
it1/6

4
√
3

∫ −ζ3

0

(ζ23 + i
√
3z)dz√

z(z − 1)(z + ζ3)

From which we deduce

d

dt

(
ωα ηα
ωβ ηβ

)
=

(
ωα ηα
ωβ ηβ

)(
−1/6 0
0 1/6

)
.
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