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1. Finite flat group schemes

In this section we want to study the properties of finite flat group schemes G over a Dedekind base
S. We will be mainly interested in the case in which S = Spec(Z) or some affine open subschemes.
Since finite morphism are affine, we will almost always restrict to the case G = Spec(A).

Def 1. Let X be a finite S-scheme. We say X is flat over S if and only if OX is locally free of
finite rank as an OS-mod. In particular, X is finite flat over S if and only if there exists a cover of
S by affine Ui such that f−1(Ui) → Ui is of the form

Spec(A) → Spec(R)

with A free of finite rank as an R-mod. If X and S are affine, this is equivalent to ask OX(X) is
flat as an OS(S) module. The rank is a locally constant function on S and it is called the order of
X over S denoted by [X : S].

1.1. The étale case. We recall a standard result for finite flat group schemes.

Prop. 1.1. Let G = Spec(A) a finite flat group scheme of order p over S = Spec(R). If p is
invertible in R then G is étale over S.

Proof. See [EGA IV] 17.6.2. □

Recall that we have an important equivalence of categories for finite étale group schemes.

Theorem 1. Let S = Spec(R) be a connected affine scheme. Let S = Spec(R) an universal étale
cover of S. Let π = Gal(R,R) be the absolute Galois group associated. We then have an equivalence
of categories between finite étale commutative S-group schemes and the category of finite discrete
π-modules. The functor is given by

Y 7→ Y (R).
1



2 GROUP SCHEMES À LA MAZUR

1.2. Oort and Tate classification. Let p be a prime, consider the ring Λ given by

Λ = Z
[
µp−1,

1

p(p− 1)

]
∩ Zp .

Hereafter some examples of Λ for various p’s

(1) p = 2, Λ = Z,
(2) p = 3, Λ = Z

[
1
2

]
,

(3) p = 5, Λ = Z
[
i, 1

2(2+i)

]
(4) p = 7, Λ = Z

[
ρ, 1

6(ρ−4)

]
Let S = Spec(R) a scheme over Λ and consider G = Spec(A) a finite flat group scheme of order p
over S. In this section, we want to classify all the possible R-algebra A. By a Theorem of Deligne,
we know that G is annihilated by p, this means that A is a module over the group algebra R[F×

p ].
Let ei the R-operators defined by

ei =
1

p− 1

∑
m∈F×

p

χ−i(m)[m] ∈ R[F×
p ]

where χ is the usual Teichmuller character χ : F×
p → Zp. This operators are orthogonal and idem-

potent on the augmentation ideal I of A, I = ker(A→ R). In particular we have a decomposition

I =

p−1⊕
i=1

Ii, Ii = {f ∈ A : [m]f = χi(f)}.

In particular, Ii are locally free of rank 1 and Ii1 = Ii for every 1 ≤ i ≤ p− 1.
Consider the group µp,Λ = Spec(B) with B = Λ[z]/(zp − 1). The augmentation ideal is given by

I = B(z − 1) that admits a basis over Λ given by (1− zm). This induces the decomposition

I = Λ(1− z) + Λ(1− z2) + · · ·+ Λ(1− zp−1).

For each i we define

yi = (p− 1)ei(1− z) =
∑

m∈F×
p

χ−i(m)(1− zm).

We then get the decomposition I = Λy1 + Λy2 + · · ·Λyp−1, where Ii = yiΛ. From the definition of
ei we obtain that the [m]yi = χ(m)iyi. Since I

i
1 = Ii we define wi to be

yi1 = wiyi.

For the first primes we have the following list of wi

(1) p = 2: w1 = 1, w2 = 2,
(2) p = 3: w1 = 1, w2 = −1, w3 = −3,
(3) p = 5: w1 = 1, w2 = −i(2 + i), w3 = (2 + i)2, w4 = −(2 + i)2, w5 = −5(2 + i)2.

The following proposition follows straightforwardly from the previous discussion

Prop. 1.2. The elements wi are invertible for every 1 ≤ i ≤ p − 1, wp = pwp−1. We have
B = Λ[y]/(yp − wpy) where y = y1. Furthermore, y satisfies the following properties

(i) sy = y ⊗ 1 + 1⊗ y +
1

p− 1

p−1∑
i=1

1

wiwp−i
yi ⊗ yp−i;

(ii) [m]y = χ(m)y;

(iii) z = 1 +
1

p− 1

(
y +

y2

w2
+ · · ·+ yp−1

wp−1

)
.

Consider now again an S-group scheme G = Spec(A) finite flat group of order p with S = Spec(R)
where R is a Λ-algebra. Then take the symmetric R-algebra generated by I1

SymR(I1) = R⊕ I1 ⊕ I⊗2
1 ⊕ · · ·
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by the previous discussion, we have a surjective morphism SymR(I1) → A induced by the inclu-
sion I1 ⊂ A. The kernel is given by the ideal generated by (a − 1) ⊗ I⊗p where a ∈ I⊗(1−p) =

HomR(I
⊗p
1 , I1) is the element corresponding by the multiplication in A. Let G′ = Spec(A′) the

Cartier dual of G. We can define analogously I ′, I ′1, a
′. Since G is annihilated by p, we have that

the Cartier pairing factors through µp,s

G×S G
′ → µp,S .

Let φ : R[y]/(yp −wpy) → A⊗T A
′ the associated map on the algebras. We then have the following

result.

Lemma 1.1. The image φ(y) of y is a generating section of I1 ⊗ I ′1. Identifying I ′1 with I
⊗(−1)
1 =

HomR(I1, R), we have a⊗ a′ = wp.

From this characterisation we obtain the following equivalence result.

Theorem 2. The map G 7→ (I ′1, a, a
′) gives a bijection between isomorphism classes of S-group

schemes of order p and isomorphism classes of triples (L, a, b) where

(1) L is a locally free R-module of rank 1,
(2) a ∈ L⊗(p−1) and,
(3) b ∈ L⊗(1−p) = HomR(L

⊗(p−1), R)

such that a⊗ b = wp.

Proof. We will show only how to construct a group scheme from the triple (L, a, b). The problem is
local on the base S, we can then restrict to S = Spec(R) and L = R free on S. We have in particular
a, b ∈ R such that ab = wp. Let F the field of fractions of Λ, U an indeterminate. By the previous
proposition, we have µp,F (u) = Spec(A) with

A = F (U)[y]/(yp − wpy),

with comultiplication given by

sy = y ⊗ 1 + 1⊗ y +
1

p− 1

p−1∑
i=1

1

wiwp−i
yi ⊗ yp−i.

Define R0 = Λ[X1, X2]/(X1X2 − wp) and C = R0[Y ]/(Y p − X1Y ) under the change of variables
Y = U−1y we observe that C injects in A. In particular, it can be checked that the comultiplication
on A induces a comultiplication on C. Let G0 = Spec(C) the R0-group scheme of order p then
obtained. Consider the morphism h : R0 → R induced by sending X1 to a and X2 to b. The group
scheme obtained by base change is then

G = G0 ×R0
Spec(R) = Spec(R[Y ]/(Y p − aY )).

□

Example 1. Consider the case of a Λ-algebra R that is complete noetherian local with residue field
of characteristic p. In this case, every projective module of rank one is free. Given a, c ∈ R such
that ac = p, we denote Gc

a,R = GR
a,cwp−1

Gc
a,R = Spec(R[Y ]/(Y p − aY )).

We will now focus to the case of K algebraic number field of finite degree over Q and R an
integrally closed subring of K whose field of fractions is K (we then also allow Z[1/p] in Q). Let M
the set of non-trivial discrete valuations of R. For each ν ∈ M denote Rν the completion and Kν

its fraction field. We want then to classify the R-group schemes G of order p. Let H the generic
fiber of G, H = G×R Spec(K) and Gν = G×R Spec(Rν) its completion at every place ν. We then
have that each generic fiber of Gν coincide with the completion of H

Gν × Spec(Kν) = Hν = H ×R Spec(Kν).

Let E be the functor that associates to a ring X the set of isomorphism classes of group schemes
over Spec(X) of order p. Let A×

K be the idéle class of K and Uν the group of units of Rν for every
ν ∈M . We then have the following characterisation for the set of étale group schemes.
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Prop. 1.3. We have the following canonical bijections

E(K) ∼= Homcont(A×
K /K×,F×

p ),

E(Kν) ∼= Homcont(K
×
ν ,F

×
p ),

E(Rν) ∼= Homcont(K
×
ν /Uν ,F×

p ) for ν ∤ p.

Proof. First of all, observe that from Prop. 1.1 we have that all the group schemes for the rings
mentioned are étale. By Theorem 1 we then have an equivalence of categories between finite étale
group schemes and finite discrete π-modules. Since we are dealing with groups of order p, we only
need to specify what is the continuous action of π on Z /pZ. This amounts to give a map from
π → F×

p that factors through a finite Galois extension. Using Class Field Theory we have the
following commutative diagram

A×
K /K× π(K)ab

K×
ν π(Kν)

ab

K×
ν /Uν π(Rν)

ab.

These horizontal maps becomes isomorphism when we pass to the completion with respect to open
subgroups of finite index. They then induces an isomorphism when we consider the group of con-
tinuous characters with values in a finite group like F×

p . □

In order to then give a final characterization to these group schemes, we need to specify the data
at the places Mp corresponding to ν|p. By Theorem 2 we have a characterisation of the finite group
schemes of order p over a Λ-algebra. In particular, when we consider the completion at Rν we have
an explicit description provided in example 1. For every ν ∈Mp, there exists a ∈ Rν such that

Gν = G×R Spec(Rν) ∼= (Gp/a
a )Rν

.

Let ηGν be the valuation of a ∈ Rν attached to the completion of G. The value of ην completely
determines the structure of Gν . We can then state the classification result of Oort and Tate.

Theorem 3 (Oort - Tate). Let G be a finite flat group of order p over Spec(R). The map G 7→
(ψ, (ηGν )ν∈Mp) gives a bijection between isomorphism classes of R-group schemes of order p and

the system of continuous homomorphism ψ : A×
K /K× → F×

p together with a sequence of integers
(ην)ν∈Mp such that 0 ≤ ην ≤ ν(p) satisfying the following properties

(1) for ν ∈M −Mp, ψ is unramified at ν, i.e. ψ(Uν) = 1;
(2) for ν ∈Mp, ψν(u) = Nk/ Fp

(u)−ην , for all u ∈ Uν where ψν is the canonical restriction of ψ
to Kν , k is the residue field of Rν and u is the reduction to the residue field.

Corollary 3.1. Let R ring of integers of a number field with class number coprime with p− 1 such
that p is inert. Then the only finite flat R-groups of order p are (Z /pZ)R and (µp)R.
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2. Quasi-finite groups

First of all, recall the definition and basic properties of quasi-finite morphisms.

Def 2. A morphism of schemes f : X → Y is called quasi-finite if it is of finite type and satisfies
one of the following equivalent properties

(i) every x ∈ X is isolated in its fiber f−1(f(x));
(ii) for every x ∈ X, f−1(f(x)) = X ×Y f−1(f(x)) is a finite k(f(x)) scheme;
(iii) for every x ∈ X, OX,x ⊗ k(f(x)) is finitely generated over k(f(x)).

We have that closed immersions are quasi-finite, if f is unramified then f is quasi-finite and that
quasi-finite morphisms are stable and base change and composition.

The main property of quasi-finite morphism is given by the following structure result.

Prop. 2.1 (Stacks 37.41.6). Let f : X → S be a quasi-finite morphism of schemes, separated and
locally of finite type. Let s ∈ S then there exists an elementary étale neighborhood (U, u) → (S, s)
and a decomposition

X ×S U = Xf

∐
Xν

with

(1) Xf → U finite morphism,
(2) Xν has empty fiber of s.

Let N, p be distinct prime numbers. We will mainly study quasi-finite schemes over S = SpecZ
and S′ = Spec(Z[1/N ]), S′′ = Spec(Z[1/p]). In particular, Mazur’s theorem revolves around quasi-
finite group schemes G over S of order a power of p with the following properties:

(1) G|S′ is finite flat group scheme over S′;
(2) G|S′′ is quasi-finite étale group scheme over S′′;

in particular, G|S′∩S′′ is a finite étale group scheme over S′ ∩ S′′.
We want then to describe the quasi-finite étale morphism X → S′′ that are finite étale over

S′∩S′′. A similar theorem gives us a classification in terms of the Galois structure where we specify
the data at the special fiber over (N). To do this, the structure proposition for quasi-finite morphism
plays a very important role

Lemma 2.1. Let X a quasi-finite étale separated scheme over S′′. Assume that X is finite étale
over (S′ ∩ S′′). There is a canonical injection

X(FN ) ↪→ X(Q)IN ,

in particular, this is a bijection with #X(FN ) = rank(XQ) if and only if X → S′′ is finite.

Proof. The property of finiteness over an open neighborhood of (N) can be checked at X|OS′′,(N)
→

Spec(OS′′,(N)). Furthermore, we can check it after any fppf base change, and in particular since

the strict henselianization Osh
S′′,(N) is faithfully flat over OS′′,(N) we can restrict to the case X → S

quasi-finite separated with S local and strictly henselian. In this case, the residue field becomes FN

and the fraction field K is the fixed field of Q under the inertia group IN . By the structure result
of quasi-finite schemes we have that over S, X decomposes as

X = Xf

∐
Xη
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with Xf finite over S and Xη having empty closed fiber. In particular Xf is finite étale over S, this
implies Xf is a finite disjoint union of copies of S. We then have a natural bijection

Xf (K) → Xf (FN ) = X(FN )

defined by reduction. We then obtain an injection

X(FN ) ↪→ X(K) = X(Q)IN .

This is bijective if and only if Xf (K) = X(K). □

Theorem 4. We have an equivalence of categories between quasi-finite separated étale S′′-schemes
that are finite over (S′′ ∩ S′) and the category whose objects are cuples

(Σ,ΣN )

with Σ as before a finite discrete Gal(Q/Q)-sets that are unramified along S′ ∩ S′′ and ΣN a finite
Gal(FN/FN )-subsets of ΣIN fixed subset under the action of the inertia group IN . The functor is
given by

Y 7→ (Y (Q), Y (FN ).

Corollary 4.1. Let G be a finite étale (S′ ∩ S′′) group scheme. Then there exists quasi-finite
separated S′′ group schemes G♭, G♯ with restriction G to (S′ ∩ S′′) such that for every quasi-finite
G′ S′′ group scheme, G contains G♭ as an open subscheme and it is contained in G♯ as an open
subscheme. That is, G♭ and G♯ are minimal and maximal quasi-finite separated S′′ models for G.
Moreover, G♯ is finite over S′′ if and only if G(Q) is unramified at N .

Proof. To make the minimal and maximal model of G we can choose respectively G♭(FN ) and
G♯(FN ) to be the trivial and the full finite subgroup of G(Q)IN . □
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3. Admissible groups

3.1. Filtrations.

Def 3. Let G|S a group scheme as above. Let H(Q) be any sub-Gal(Q/Q)-module of G(Q). We then

define H to be the subgroups scheme associated to H(Q). To understand this group, we consider its
restrictions to S′ and S′′.

Over S′ we consider the scheme-theoretic closure of H(Q) in the finite flat group scheme G|S′ .

Over S′′ we consider the group scheme associated to the Galois structure (H(Q), H(Q)∩G(FN )).

Def 4. An admissible p-group G over S is a separated, quasi-finite flat group scheme such that G|S′

is finite flat of order a power of p, such that G|S′ posses a filtration by finite flat subgroup schemes
such that the successive quotients are S′ isomorphic to Z /pZ or µp, called admissible filtrations.

From the definition we obtain that closed subgroups and quotiens of admissible groups are again
admissible. In particular, we then have the notion of short exact sequence of admissible groups

0 → G1 → G2 → G3 → 0

with G1 closed in G2 and the morphism G2 → G3 induces the isomorphism of fppf sheaves G2/G1
∼=

G3.

Def 5. Let G be an admissible p-group. We then define the following numerical invariants attached
to G:

(1) l(G) = logp(order G|S′) called the length of G;
(2) δ(G) = logp(order G|S′)− logp(order G| FN

) called the defect of G;
(3) α(G) equals to the number of (Z /pZ)’s occuring as successive quotients in the filtration of

G;
(4) hi = logp(order H

i
fppf (S,G)) order of the fppf cohomology of G.

3.2. Elementary admissible groups.

Def 6. We call an admissible group G elementary if it has length 1.

Prop. 3.1. Up to isomorphism, there are four elementary admissible p-groups over S:

Z /pZ, Z /pZ♭, µp, µ♭
p.

Proof. First of all, consider finite flat groups over S′ of order p. By Reynauld’s theorem we have
that the only possibilities are Z /pZ or µp. To extend this to S, we consider the restriction to
(S′ ∩ S′′) and we apply Theorem 4. We then need to specify the structure at the fiber (N). Since
G(Q) = Z /pZ we only have two possibilities, either we extend by 0 or we take the full group. In
the first case we obtain G♭, in the latter we obtain the finite flat groups Z /pZ or µp. □

The numerical invariants of the elementary admissible groups are given by the following table
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where ε is given by

ε =


0 if N ̸≡ 1 mod p for p odd

or N ̸≡ 1 mod 4 for p = 2

1 otherwise.

Prop. 3.2. Let G|S be an admissible group, then

h1(G)− h0(G) ≤ δ(G)− α(G).

Proof. First of all, the right hand side is additive for short exact sequences of admissible groups.
Indeed, consider

0 → G1 → G2 → G3 → 0

short exact sequence of that type, then the order of G2 over S′ and over FN is given by the sum
of those of G1 and G3. Similar thing happens when we fix a filtration for G2 and we consider the
induced filtrations of G1 and G3, the number of (Z /pZ)’s in the filtration of G2 will correspond to
the total number in G1 and G3. On the other hand, the difference of the orders of the cohomologies
is subadditive. Considering the long exact sequence in the fppf cohomology, will give us

h1(G2)− h0(G2) ≤ (h1(G1)− h0(G1)) + h1(G3)− h0(G3).

We can then conclude by induction on the length, checking that the base case of length one holds
by the numerical invariant provided in the table above. □
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4. Criterion for rank 0

Let N, p be distinct prime numbers.

Theorem 5. Let A/Q be an abelian variety with good reduction outside of N and purely toric
reduction at N . Let A be its Néron model and suppose A[p] is admissible. Then A/Q has rank 0.

Proof. First of all, we replace A by A × A∨. Showing that (A × A∨)(Q) has rank 0 will imply
that A has rank 0. In this way, we can assume that A[p]|Z[1/N ] is its own Cartier dual. Let

A0 be the fiberwise identity component of the Néron model A. A0 is obtained removing the non
identity components of the bad fiber over (N). The purely toric reduction hypothesis implies that
the multiplication-by-p map [p] : A0 → A0 is surjective. We then have the following short exact
sequence

0 → A0[p] → A0 → A0 → 0.

Consider the long exact sequence in the fppf cohomology, obtaining

0 → A0(Z)/pA0(Z) → H1
fppf (Z,A0[p]) → H1

fppf (Z,A0)[p] → 0.

As before, let hi = logp(order H
i
fppf (Z,A0[p])) be the order of the cohomology group. Since A0(Z)

is of finite index in A(Z) = A(Q) = Zρ ⊕T , with T torsion group, we deduce

A0(Z)/pA0(Z) ∼= (Z /pZ)ρ+h0

.

By the exact sequence in fppf cohomology we then deduce ρ+h0 ≤ h1 and then ρ ≤ h1−h0. Using
Proposition 3.2 on admissible groups we have

ρ ≤ h1 − h0 ≤ δ − α.

Now A0[p] is a torus by hypothesis, then we have A0
|FN

[p] has rank pg with g = dimA and so

δ = 2g− g = g. Using the fact that A0[p]|Z[1/N ] is its own Cartier dual, we deduce that the number
of Z /pZ’s is equal to the number of µp’s, that means α = 2g/2 = g. We conclude

ρ ≤ h1 − h0 ≤ δ − α = g − g = 0.

□
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