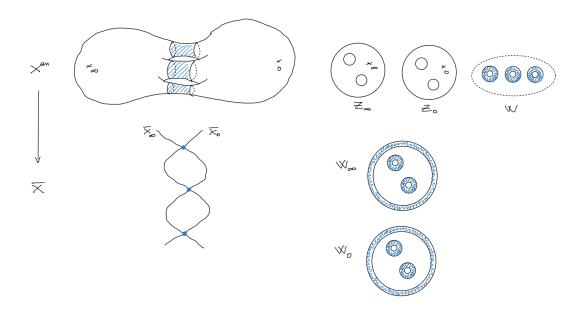
1. Hypercohomology of Modular Curves

Consider X = X(Np,2) modular curve with Np level structure and full 2 level structure. Let X^{an} be the p-adic rigid analytic curve and consider Z_{∞} and Z_0 the ordinary loci containing the cusps $[\infty]$ and [0] that are swap under the Atkin-Lehner involution ω_{Np} . Let W be the union of supersingular annuli. We then have X^{an} is given by the disjoint union

$$X^{an} = Z_{\infty} \cup W \cup Z_0.$$



It will be useful later to introduce the notation $W_{\infty} = Z_{\infty} \cup W$ and $W_0 = Z_0 \cup W$. Let Y the open curve obtained removing the cusps and \mathcal{E} the generalised elliptic curve over X

$$\pi: \mathcal{E} \to X$$
.

Let \mathcal{H} be the relative de Rham cohomology with log singularities at the cusps $\mathcal{H}_{dR}(\mathcal{E}/X, \log)$. We then have that \mathcal{H} is a coherent \mathcal{O} -mod locally free of rank 2 with fibers $H_{dR}(\mathcal{E}_x/k(x))$. We have a canonical decomposition

$$\mathcal{H} = \omega \oplus \omega^{-1}$$

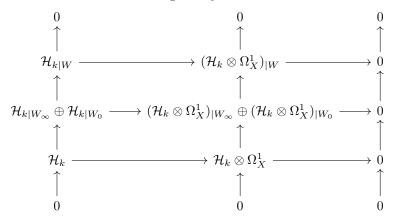
with $\underline{\omega} = \pi_* \Omega^1_{\mathcal{E}/X}(\log)$. For k non-negative integer we define the coherent \mathcal{O} -mod \mathcal{H}_k to be

$$\mathcal{H}_k := Sym^k(\mathcal{H}) = \underline{\omega}^{-k} \oplus \underline{\omega}^{2-k} \oplus \cdots \underline{\omega}^k.$$

The Gauss-Manin connection $\Delta: \mathcal{H} \to \mathcal{H} \otimes \Omega^1_X$ induces a complex of sheaves

$$\mathcal{H}_k^*: 0 \to \mathcal{H}_k \xrightarrow{\Delta} \mathcal{H}_k \otimes \Omega_X^1 \to 0$$

we want to study its hypercohomology $\mathbb{H}^1(X, \mathcal{H}_k^*)$. Consider the covering $\{W_{\infty}, W_0\}$ and take the double complex $\mathcal{H}^{*,*}$ where the columns are given by Cěch resolution



We then have the total complex is given by

$$Tot^{0}(\mathcal{H}^{*,*}) = \mathcal{H}_{k}(W_{\infty}) \oplus \mathcal{H}_{k}(W_{0})$$
$$Tot^{1}(\mathcal{H}^{*,*}) = \mathcal{H}_{k}(W) \oplus (\mathcal{H}_{k} \otimes \Omega_{X}^{1}))(W_{\infty}) \oplus (\mathcal{H}_{k} \otimes \Omega_{X}^{1}))(W_{0})$$
$$Tot^{2}(\mathcal{H}^{*,*}) = (\mathcal{H}_{k} \otimes \Omega_{X}^{1}))(W)$$

The 0th hypercohomology group can then be directly read as the group of global horizontal sections $\mathbb{H}^0(X,\mathcal{H}_k^*) = \{ \eta \in \mathcal{H}_k(X) : \nabla \eta = 0 \}.$

$$Z^{1} = \{ (\eta, \xi_{\infty}, \xi_{0}) \in Tot^{1}(\mathcal{H}^{*,*}) : \nabla \eta = \xi_{\infty|W_{\infty}} - \xi_{0|W_{\infty}} \}$$

$$B^{1} = \{ (\eta_{\infty} - \eta_{0}, \nabla \eta_{\infty}, \nabla \eta_{0}) \in Tot^{0}(\mathcal{H}^{*,*}) : \eta_{\infty} \in \mathcal{H}_{k}(W_{\infty}), \eta_{0} \in \mathcal{H}_{k}(W_{0}) \}$$