
ALGANT Master thesis in Mathematics

Two-variable p-adic L-function

Paolo BORDIGNON

Advised by Prof. Pierre CHAROLLOIS
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CHAPTER 1

Introduction

This mémoire aims to study the construction of p-adicL-functions attached to a quadratic imag-

inary field with respect to a particular Hecke character. The complex L-functions are a widely

studied object that arise in different branches of Mathematics. It is possible to construct p-adic

measures that interpolate some special L-values in order to create a new arithmetic object that

enable us to study its properties from an algebraic point of view.

T. Kubota and H.W. Leopold [LK64] gave a first construction of p-adic L-function for the Rie-

mann ζ-function and its twists. They used Kummer’s congruences of Bernoulli numbers Bn
to interpolate particular negative values of the Riemann ζ function. Later, K. Iwasawa [Iwa69]

discovered that the Bernoulli numbers and their properties arise from the arithmetic of towers

of cyclotomic fields. Analogously to the previous construction, Manin and Vishik [VM74] and

Katz [Kat76] constructed p-adic L functions which interpolates special values of Hecke L-series

associated with a quadratic imaginary field K, in which p-splits. It happens that special values

of Eisenstein series attached to elliptic curves with complex multiplication interpolate the val-

ues of L-functions in the same way as Bernoulli numbers do for the Riemann ζ function. Coates

and Wiles described in two fundamental papers [CW77], [CW78] a norm-coherent sequence of

elliptic units encoding the Eisenstein numbers properties and involving tower extensions of

K with ray class fields generated by torsion points of the elliptic curve associated to K. This

approach has been furtherly developed by R. Yager [Yag82] for class number 1 and E. de Shalit

[DS87] for the general construction. In this paper we will closely follow Yager’s construction.

More concretely, consider K a quadratic imaginary field and OK its ring of integers. We will

always assume that K has class number 1. We can then consider an elliptic curve E defined

over K with complex multiplication by OK . By the theory of complex multiplication, there

exists a Hecke character ψ on K attached to E that encodes the arithmetic structure of E. Let

p ̸= 2, 3 be a rational prime such that E has good reduction above it. We will assume p splits in

K, (p) = pp. Fix a Weierstrass model for E

y2 = 4x3 − g2x− g3

such that g2, g3 ∈ OK and its discriminant is prime to p. Let L ⊂ C the lattice associated to the

model, then there exists Ω∞ ∈ C such that L = Ω∞OK . For each pair (i1, i2) ∈ (Z /(p − 1)Z)2,

1



CHAPTER 1: INTRODUCTION

Katz has proved the existence of a power series G(i1,i2) with coefficients in the ring of integers

A of a certain unramified extension of the completion ofK at p with the following interpolation

property. If 0 ≤ j < k, we write

L∞(ψ
k+j

, k) =(1− ψ(p)k+j(Np)−j+1)(1− ψ(p∗)k+j(Np∗)−k)(
2π√
dK

)j
Ω−k−j

∞ L(ψ
k+j

, k)

where dK is the discriminant ofK and we fix a generator u of (1+pZp)×. Then for each (k1, k2)

pair of integers satisfying k1 > −k2 ≥ 0 and (k1, k2) ≡ (i1, i2) mod (p− 1) we have

G(i1,i2)(uk1 − 1, uk2 − 1) = (k1 − 1)!Ωk2−k1p L∞(ψ
k1−k2

, k1).

To construct such a power series we will study the properties of a rational function onE defined

by

ΘE,a = α−12∆(E)Na−1
∏

P∈Ea−O
(x− x(P ))−6

and in particular of some special values at torsion points called elliptic units. These elements

correspond to a generalization of the cyclotomic units in Qp and live in ray class field extensions

of K. These extensions form a tower and they are generated by the coordinate of the torsion

points of the elliptic curve E. The Lubin-Tate theory in Chapter 2 describes the properties

of these tower extensions. The theta function comes to play a role in the interpolation of L-

functions because the Laurent expansion has coefficients of the form

(
d

dz

)k
logΘ(z, a) = (−1)k−112(k − 1)!(NaEk(z, L)− Ek(z, a−1L)).

where Ek are the Eisenstein-Kronecker functions and they have the property

Ek(ρ, L) = ρ−kψ(c)kLm(ψ
k
, k, c)

with ρ an m-division point. With all these elements we can eventually construct a power series

G(i1,i2) interpolating the L function attached to K and of character ψ.

In the last chapter we will study the properties of a two variables theta function Θ(z0,w0)(z, w)

that encodes the information of the Eisentsein-Kronecker series allowing us to reobtain the

construction of Yager’s interpolation from a different point of view. In particular, the Laurent

expansion of this function is of the form

Θz0,w0(z, w) = ⟨w0, z0⟩δz0z−1 + δw0w
−1 +

∑
k,j≥0

(−1)k+jEj,k+1(z0, w0)

Ajj!
zkwj .

In this Mémoire we used this property to actually compute the Eisenstein numbers at differ-

ent tosion points, and recognize them as algebraic numbers. All the computations have been

developed with GP/PARI.

2



CHAPTER 1: INTRODUCTION

1.1 Background and notation

1.1.1 Quadratic imaginary fields

Let K quadratic imaginary field with OK ring of integers, then there exists d ∈ Q such that

K = Q(
√
d). We denote by −dK the discriminant of K and we have

−dK =

d if d ≡ 1 mod 4

4d otherwise.
(1.1)

By Dirichlet’s unit theorem, we have that O×
K = ωK where ωK is the set of roots of unity in K.

Since K/Q is quadratic, then ωK = 2, 4 or 6. We fix an embedding i : Q ↪→ C.

Let f, g ⊆ OK be two integral ideals, then we denote ωf the number of roots of unity congruent

to 1 mod f. The ray class field modulo f is denoted by K(f) and we define K(fg∞) by

K(fg∞) =
⋃
n≥0

K(fgn).

We denote by H = K(1) the Hilbert class field. By Corollary A.4.1 we have

[K(g) : H] = hgK/hK =
ωg

ωK
#(OK/g)

×. (1.2)

1.1.2 Elliptic curve associated to K

Consider K to be an imaginary quadratic field with class number 1, then K coincides with the

Hilbert class field H = K and OK is a PID. By Corollary B.1.2, there exists an elliptic curve E

defined over K with complex multiplication by OK . Denote by S the finite set consisting of 2,3

and the rational primes q such that E has bad reduction at least one prime above q. We fix a

Weierstrass model for E

y2 = 4x3 − g2x− g3 (1.3)

where g2, g3 ∈ OK and the discriminant of (1.3) is divisible only by primes of K lying above

primes in S. This is possible because K has class number 1 (See [Sil94].VIII.8). Let ℘(z) the

Weierstrass function associated with (1.3) and L the period lattice of ℘(z). As usual, we have

an analytic morphism

ξ : C /L→ E(C)

with ξ(z) = (℘(z), ℘′(z)). We can identify OK with the endomorphism ring in such a way that

the endomorphism corresponding to α ∈ OK is given by ξ(z) 7→ ξ(αz). Choose an element Ω∞

of the period lattice L such that

L = Ω∞OK .

Let ψ be the Hecke character associated toE overK defined by Theorem B.3 and fix a generator

f of f = (f). We fix a prime p of K lying above a rational prime p such that p ̸∈ S and p is of

degree 1. Hence p has good reduction, it is coprime to 6f and we will write

(p) = pp.

3



CHAPTER 1: INTRODUCTION

Put π = ψ(p) and π = ψ(p), and observe that from Corollary B.3.1.(i) they are generators of the

respective ideals

p = (π), p = (π).

We will denote Eα to be the kernel of the endomorphism α of E and let

Eπ∞ =
⋃
n≥0

Eπn+1 , Eπ∞ =
⋃
m≥0

Eπm+1 .

4



CHAPTER 2

Elliptic tower field

Cyclotomic extensions of Qp have been broadly studied and their properties have been remark-

ably important for the ideas behind Class Field Theory and p-adic interpolation of ζ-function.

In this chapter, we will study how the properties of this tower field extension can come from

a more general construction called Lubin-Tate groups. In particular, we will use this theory

to study the extension of the quadratic imaginary field K with torsion points of the elliptic

curve E attached to it. These towers will be the setting in which the theory of the elliptic units

develops.

2.1 Formal groups

First of all, we recall the basic properties of the formal groups and their formalism. The formal

groups can give the structure of a group to complete algebras over a fixed ring, this allows us

to study the properties of the power series instead of the single group.

2.1.1 Definitions and first properties

Let R be a commutative ring with identity.

Definition 2.1. A formal group F defined over R is a power series F (X,Y ) ∈ R[[X,Y ]] satisfying:

(i) F (X,Y ) = X + Y+(terms of degree ≥ 2);

(ii) F (X,F (Y,Z)) = F (F (X,Y ), Z) (associativity);

(iii) F (X,Y ) = F (Y,X) (commutativity);

(iv) there is a unique power series ι(T ) ∈ R[[T ]] such that F (T, ι(T )) = 0 (inverse);

(v) F (X, 0) = X and F (0, Y ) = Y .

We call F (X,Y ) the formal group law of F .

5



CHAPTER 2: ELLIPTIC TOWER FIELD

Definition 2.2. The formal additive group, denoted Ĝa is given by

F (X,Y ) = X + Y.

The formal multiplicative group, denoted Ĝm is given by

F (X,Y ) = X + Y +XY = (1 +X)(1 + Y )− 1.

Let A be an R-algebra and a an ideal such that A is complete and separated in its a-adic topol-

ogy. Then if f, g ∈ a, F (f, g) and ι(f) converge to elements of a, denoted respectively by f [+]g

and [−]f . Observe that with [+] as addition a becomes an abelian group, we write F (a) to

distinguish it from the ordinary addition on a.

Definition 2.3. Let (F , F ) and (G, G) be formal power groups defined over R. A homomorphism from

F to G defined over R is a power series with no constant term f(T ) ∈ R[[T ]] satisfying

f(F (X,Y )) = G(f(X), f(Y )).

F and G are isomorphic over R if there are homomorphism f : F → G and g : G → F defined over R

with

f(g(T )) = g(f(T )) = T.

The collection Hom(F,G) of such homomorphism forms a group with respect to the addition law of G

(f [+]g)(T ) := G(f(T ), g(T )),

and End(F ) becomes a ring under composition as a product.

Theorem 2.1. Let R be a domain of characteristic 0, and f ∈ Hom(F, F ′). Then F (T ) = aT+(higher

terms) induces an injective group homomorphism

Hom(F, F ′)→ R

f 7→ f ′(0) = a.

Proof. See [Haz78] 20.1.

For a ∈ R we denote [a]F,F ′ ∈ Hom(F, F ′) and [a]F ∈ End(F ) the unique elements such that

[a]′F,F ′(0) = [a]′F (0) = a.

Definition 2.4. An invariant differential on F/R is a differential form ω

ω(T ) = P (T )dT ∈ R[[T ]]dT

satisfying

ω ◦ F (T, S) = ω(T ).

In other words, satisfying

P (F (T, S))FX(T, S) = P (T ),

where FX(T, S) is the partial derivative of F with respect to the first variable. An invariant differential

as above is said to be normalized if P (0) = 1.

6



CHAPTER 2: ELLIPTIC TOWER FIELD

Prop. 2.1.1. Let F/R be a formal group. There exists a unique normalized invariant differential on

F/R, given by the formula

ω = FX(0, T )−1dT.

Every invariant differential on F/R is of the form aω for some a ∈ R.

Proof. See [Sil09] 4.2

Definition 2.5. Let R be a ring of characteristic 0, K = R⊗Q, and F/R be a formal group. Let

ω(T ) = (1 + c1T + c2T
2 + c3T

3 + · · · )dT

be the normalized invariant differential on F/R. The formal logarithm λF ∈ K[[T ]] of F/R is the

power series

λF (T ) =

∫
ω = T +

c1
2
T 2 +

c2
3
T 3 + · · · ∈ K[[T ]].

The formal exponential of F/R is the unique power series εF (T ) ∈ K[[T ]] satisfying

λF (T ) ◦ εF (T ) = εF (T ) ◦ λF (T ) = T.

Observe that by definition we have that λ′(T ) ∈ R[[T ]]× has coefficients in R.

Prop. 2.1.2. Let F/R be a formal group with char(R) = 0. Then

λF : F → Ĝa

is an isomorphism of formal groups over K = R⊗Q with inverse εF .

Proof. See [Sil09] 5.2.

We conclude with the definition of height for rings of finite characteristic.

Definition 2.6. Let F be a formal group over a field of characteristic p > 0. Then [p]F (T ) =

T [+] · · · [+]T (p times) is a power series in Xq with q = ph for some h > 0. The largest possible h

is called the height of F . If [p]F = 0, then F is said to be of infinite height.

2.1.2 Lubin-Tate groups

Let k be a finite extension of Qp, let O and p be its valuation ring and maximal ideal. Let the

residue field O/p have q elements. Lubin-Tate [LT65] introduced an extremely useful class of

formal groups defined over O that possess a special endomorphism that lifts the Frobenius

substitution X 7→ Xq .

Definition 2.7. Let Fπ denote the set of power series f(T ) ∈ O[[T ]] which satisfy the two conditions

(i) f(T ) ≡ πT mod deg 2;

(ii) f(T ) ≡ T q mod p;

7



CHAPTER 2: ELLIPTIC TOWER FIELD

where π is a uniformizer of O. The simplest choice for an element f ∈ Fπ is f(T ) = πT + T q .

Lemma 2.1.1. Let f(T ), g(T ) be elements of Fπ , and let L(X1, . . . , Xn) =
∑n
i=1 aiXi be a linear form

with coefficients in O . Then there exists a unique series F (X1, . . . , Xn) ∈ O[[X1, . . . , Xn]] such that

(i) F (X1, . . . , Xn) ≡ L(X1, . . . , Xn) mod deg 2,

(ii) f(F (X1, . . . , Xn)) = F (g(X1, . . . , g(Xn))).

Proof. See [LT65].

Definition 2.8. For each f ∈ Fπ , we let Ff (X,Y ) be the series associated to the linear form L = X+Y

in Lemma 2.1.1. In particular, Ff satisfies the following properties

(i) Ff (X,Y ) ≡ X + Y mod deg 2;

(ii) f(Ff (X,Y )) = Ff (f(X), f(Y )).

For each a ∈ O, and f, g ∈ Fπ we let [a]f,g(T ) to be the series associated to the linear form L = aX in

Lemma 2.1.1. In particular, [a]f,g satisfies the following properties

(i) [a]f,g(T ) ≡ aT mod deg 2;

(ii) f([a]f,g(T )) = [a]f,g(g(T )).

The following theorem will justify the notation.

Theorem 2.2. For series f, g, h ∈ Fπ and elements a, b ∈ O, the following identities hold:

(i) Ff (X,Ff (Y,Z)) = Ff (Ff (X,Y ), Z);

(ii) Ff (X,Y ) = Ff (Y,X);

(iii) Ff ([a]f,g(X), [a]f,g(Y )) = [a]f,g(Fg(X,Y ));

(iv) [a]f,g([b]g,h(T )) = [ab]f,h(T );

(v) [a+ b]f,g(T ) = Ff ([a]f,g(T ), [b]f,g(T ));

(vi) [π]f (T ) = f(T ), [1]f (T ) = T .

In particular, for any f ∈ Fπ we associate a formal group Ff called Lubin-Tate group for which

f is an endomorphism. Analogously, the series [a]f,g coincides with the homomorphism [a]Ff ,Fg
∈

Hom(Ff , Fg) previously defined in Theorem 2.1.

Proof. Straightforward application of unicity property in Lemma 2.1.1.

We can observe that for every f, g ∈ Fπ , the formal groups Ff and Fg are canonically isomor-

phic over O through [1]f,g. By this characterization, a formal group over O is in this isomor-

phism class if and only if it has an endomorphism reducing mod π to the Frobenius T 7→ T q ,

whose derivative at the origin is π.

8
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Now observe that for each H algebraic extension of k with mH maximal ideal in the ring of

integers of H , the set mH has an O-module structure defined by

x+ y = Ff (x, y)

α · x = [α]f (x)

for every x, y ∈ mH and every α ∈ O. Consider k the algebraic closure of k, then mk has the

structure of an O-module denoted by mk,f .

Definition 2.9. For each f ∈ Fπ and each integer m ≥ 1 we let Λf,m denote the O-submodule of mk,f
consisting of elements λ such that

[πm]fλ = 0.

The following lemma will allow us to remove the dependence of f ∈ Ff .

Lemma 2.1.2. The field extension k(Λf,m)/k is a totally ramified Galois extension and it is independent

of the choice f ∈ Ff .

Proof. Since the formal groups Ff , Fg are canonically isomorphism, we have λ ∈ Λf,m if and

only if [1]g,f (λ) ∈ Λg,m. By completeness of field extension, we deduce k(Λf,m) and k(Λg,m)

coincides. We can then consider f to be πT + T q . Clearly, k(Λf,m) is the splitting field of fm(T )

and then it is Galois. Furthermore, observe that k(Λf,m) contains the roots of the polynomial

[πm]f (T ) = fm(T ) = Xqm + · · ·+ πmT

and hence those of the polynomial

Φm(T ) =
fm(T )

fm−1(T )
=
f(fm−1(T ))

fm−1(T )
= (fm−1(T ))q−1 + π

which is of degree qm − qm−1 and is irreducible over k by Eisenstein’s criterion. We conclude

k(Λf,m)/k is totally ramified.

We denote k(Λf,m) by Hπ,m/k and its Galois group by Gπ,m. We let

Λf =
⋃
m≥1

Λf,m, Hπ = k(Λf ), Gπ = lim←−
m

Gπ,m.

Theorem 2.3. Let π be a prime element of O and let f ∈ Fπ . The following assertions hold

(i) the O-module mk,f is divisible;

(ii) for each m, the O-module Λf,m is isomorphic to O/pm;

(iii) the O-module Λf is isomorphic to k/O;

(iv) for each τ ∈ Gπ there exists a unique unit u ∈ O× such that for every λ ∈ Λf we have

λτ = [u]f (λ);

(v) the map τ 7→ u is an isomorphism of Gπ onto O× under which the quotients Gπ,m of Gπ corre-

spond to the quotients O×/(1 + πmO) of O×;

9



CHAPTER 2: ELLIPTIC TOWER FIELD

(vi) for each m ≥ 1 and for each generator λm ∈ Λm, the element π is the norm of −λm for the

extension Hπ,m/k.

Proof. In view of the isomorphism [1]f,g, we may suppose f(T ) = πT + T q .

(i) Let s ∈ mk, we want to show that for each α ∈ O there exists r ∈ mk such that [α]r = s. We

can write α = uπm with u ∈ O× and m positive integer. By 2.2, we have [α] = [u] ◦ [π]m,

and then we just need to prove the theorem for α = π. Consider the polynomial Pr(T ) =

T q + πT − r and observe that since r ∈ mk then all the roots of Pr(T ) are in mk. Let t ∈ mk

be a solution of Pr(T ) = 0, we obtain

[π]t = f(t) = tq + πt = r.

We conclude mk is divisible.

(ii) The O-module Λf,1, which consists of the roots of the equation f(T ) = T q + πT = 0, has

q elements since f(T ) is coprime with f ′(T ). Therefore, Λf,1 is a one-dimensional vector

space over the residue field O/p. For the general case observe that we have

[πm]f (T ) = fm(T ) = Xqm + · · ·+ πmT

and hence the polynomial

Φm(T ) =
fm(T )

fm−1(T )
=
f(fm−1(T ))

fm−1(T )
= (fm−1(T ))q−1 + π

is of degree qm− qm−1 and is irreducible over k by Eisenstein’s criterion. We deduce Λf,m

consists of qm zeroes of [πm](T ). Now if λn ∈ Λf,n − Λf,n−1, then

O → Λn

a 7→ a · λn

is a homomorphism ofO-modules with kernel πnO. It induces a bijective homomorphism

O/πnO → Λn because both sides are of order qn.

(iii) Follows from the previous point observing we have a compatible sequence

· · · π−→ Λf,2
[π]−−→ Λf,2

[π]−−→ Λf,1 → 0.

(iv) An automorphism τ ∈ Gπ induces an automorphism of the O-module Λf . Indeed, if

λ ∈ Λf,n then [πn](λ) = 0 and so τ([πn](λ)) = 0. Since [πn](T ) has coefficients in O we

deduce

([πn](λ))τ = [πn](λτ ) = 0

and then τ(λ) ∈ Λf,n. By the previous point, we have Λf ∼= k/O, and for this module over

a complete valuation ring O, the only automorphism of Λf are those of the form λ 7→ [u]λ

for u ∈ O×.

10
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(v) From the fact that Λf generates Hπ , we deduce that the map τ 7→ u is injective. More

precisely, the unit u is congruent to 1 mod πmO i.e. multiplication by u is identity on

(O/pm) ∼= Λf,m, if and only if τ is identity onHπ,m = k(Λf,m). Observe thatHπ,m contains

the roots of the polynomial

[πm]f (T ) = fm(T ) = Xqm + · · ·+ πmT

and hence those of the polynomial

Φm(T ) =
fm(T )

fm−1(T )
=
f(fm−1(T ))

fm−1(T )
= (fm−1(T ))q−1 + π

which is of degree qm − qm−1 and is irreducible over k by Eisenstein’s criterion. Thus the

order ofGπ,m is divided by qm−qm−1, that is the order ofO×/(1+pm) and the surjectivity

follows. Passing to the inverse limit over m, we obtain Gπ ∼= U because both groups are

compact.

(vi) If λm is a root of the Eisenstein polynomial Φm(T ) then we have Hπ,m = k(λm). In fact by

the previous points every other element in Λf,n is of the form [a](λm) for a certain a ∈ O.

Since the Eisenstein polynomial is

Φm(T ) = (fm−1(T ))q−1 + π

we deduce −π is the norm of λm for the extension Hπ,m/k.

Let T be the maximal unramified extension of k, and let σ be the Frobenius automorphism

of T over k. Since Hπ,m is the splitting field of an Eisenstein polynomial, we deduce Hπ is

totally ramified over k. In particular, Hπ is linearly disjoint from T over k, and the Galois group

Gal(HπT/k) is the product of Gπ = G(Hπ/k) and Gal(T/k).

Lemma 2.1.3. For each prime element π ∈ O, there exists an homomorphism

rπ : k× → Gal(HπT/k)

such that for an arbitrary a = uπm ∈ k with u ∈ O× we have

(i) rπ(a) = σm on T ;

(ii) λrπ(a) = [u−1]f (λ) for λ ∈ Λf .

Proof. We define for each unit u ∈ O×, rπ(u) to be the identity on T , and on Hπ the reciprocal

τ−1 of the element τ ∈ Gπ corresponding to u. By the previous theorem, we have that this

map is a homomorphism rπ : O× → Gal(HπT/k). We extend this map setting rπ(π) to be the

identity on Hπ and the Frobenius automorphism σ on T . The properties (i) and (ii) are clearly

verified.

Theorem 2.4. The field HπT and the homomorphism rπ are independent of π.

11
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Proof. See [LT65] Theorem 3.

Theorem 2.5. For the field Hπ,n/k of πn-division points and for a = uπvk(a) ∈ k×, u ∈ O× we have

rHπ,n/k(a)(λ) = (a,Hπ,n/k)(λ) = [u−1]f (λ)

for every λ ∈ Λf,n and rHπ,n/k reciprocity map.

Proof. See [Neu99].V.5. Theorem 5.5.

Corollary 2.5.1. The fieldHπ,n/k of πn-division points is the class field relative to the group (π)× (1+

πnO) ⊂ K×.

Proof. For a = uπvk(a) we have the following chain of equivalences

a ∈ NHπ,n/k(H
×
π,n)⇐⇒ (a,Hπ,n/k) = 1⇐⇒ [u−1]f (λ) = λ for all λ ∈ Λf,n

⇐⇒ u−1 ∈ 1 + πnO ⇐⇒ a ∈ (π)× (1 + πnO).

Corollary 2.5.2. The composite HπT is the maximal abelian extension of k.

Proof. Let L/k be a finite abelian extension. Then we have πf ∈ NL/k(L
×) for a suitable f .

Since NL/k(L×) is open in k× and since the (1 + πnO) form a basis of neighborhoods of 1, we

have (πf ) × (1 + πnO) ⊆ NL/k(L
×) for a suitable n. Hence L is contained in the class field of

the group

(πf )× (1 + πnO) ⊆ NL/k(L×) = ((π)× (1 + πnO)) ∩ ((πf )×O×).

The class field of (π) × (1 + πnO) is Hπ,n by the previous corollary, while the class field of

(πf )×O× is the unramified extension Tf of degree f . It follows that

L ⊆ Hπ,nTf ⊆ HπT ⊆ kab.

2.2 Tower of fields

In this section, we will apply the results of Lubin-Tate theory to K quadratic imaginary ex-

tension. In particular, considering E the elliptic curve associated, we can consider its formal

group defined over a completion of K. This structure will correspond exactly to the Lubin-Tate

setting and it will allow us to study properly the tower field extension arising from K adjoint

with p-torsion points.

12
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2.2.1 Formal group of an elliptic curve

Definition 2.10. Let E be an elliptic curve given by a Weierstrass equation with coefficients in R

localization of OK at p. The formal group associated with E, denoted Ê, is given by the formal power

series associated with the group law on E of parameter t = −2x/y = −2℘(z)/℘′(z) = ε(z).

Observe that Ê is defined over R but we consider it over its completion Op, in particular we

have formal power series expansions

x = t−2a(t), y = −2t−3a(t)

where a(t) has coefficients in Op and constant term equal to 1. Recall that from the theory of

elliptic curves, there exists a translation invariant differential ωE = dx/2y. This in particular

induces a formal invariant differential on Ê (See [Sil09] IV). We can then define the formal

logarithm λ of Ê that induces an isomorphism between Ê and Ĝa

λ : Ê
∼−→ Ĝa

according to Prop. 2.1.2. In particular from the relation t = −2x/y = −2℘(z)/℘′(z) = ε(z), we

can view z as being a parameter of the formal additive group Ga and then ε(z) is the exponential

map of Ê. Furthermore observe that every isogeny [α] of E for α ∈ OK induces a formal

endomorphism

[α] : Ê → Ê

Lemma 2.2.1. For every α ∈ OK , we have

[α](t) ≡ αt mod deg 2.

Proof. By definition of the invariant differential we have ω([α](P )) = αω(P ), in particular we

obtain
d(x([α](t)))

2y([α](t))
= α

d(x(t))

2y(t)
.

Using the definition of x(t) and y(t), the right-hand side is (α + O(t))dt and the left-hand side

is ([α]′(0) +O(t))dt. This completes the proof.

From the isomorphism λ we deduce

λ([α](t)) = αλ(t).

We write Ẽ for the reduction of E modulo p. Recall the notation of the following subsets of

E(Kp)

E0(Kp) = {P ∈ E(Kp) : P̃ ∈ Ẽns(O/p)};

E1(Kp) = {P ∈ E(Kp) : P̃ = Õ}.

We have the following standard results.

13
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Prop. 2.2.1. There is an exact sequence of abelian groups

0→ E1(Kp)→ E0(Kp)→ Ẽns(O/p)→ 0

where the right-hand map is the reduction modulo π.

Proof. See [Sil09] VII.2.1.

Prop. 2.2.2. Let E/Kp be given by a minimal Weierstrass equation, let Ê/R be the formal group

associated to E. Then there is an isomorphism

Ê(p)
∼−→ E1(Kp)

Proof. See [Sil09] VII.2.2.

Theorem 2.6. Ê is a Lubin-Tate group over Kp. It is of height 1 if p splits in K/Q and of height 2 if p

is inert or ramified.

Proof. Let φ the Frobenius automorphism. The isogeny ψ(p) : E → Eφ associated to p, induces

a homomorphism of formal groups

ψ̂(p) : Ê → Ê

which is of the form

ψ̂(p)(T ) = πT + · · · ∈ Op

ψ̂(p)(T ) ≡ T q mod pOp

with q = Np. Indeed, by Corollary B.3.1.(iii) we have that ψ(p) reduces modulo p to the Frobe-

nius automorphism φq of Ẽ which corresponds to the formal endomorphism T q . Since the

formal group Ê has an endomorphism of the form of definition 2.7, then by Theorem 2.2 we

conclude Ê is a Lubin-Tate group. Observe that by Theorem 2.1 we have ψ̂(p) coincide with the

endomorphism [π].

The following lemma uses the theory just encountered to deduce properties about the order

of coordinate functions of E. It will be very useful later in the study of the theory of Theta

functions.

Lemma 2.2.2. Let b, c be non trivial coprime ideals of OK and P ∈ Eb, Q ∈ Ec primitive torsion

points in E(K) Fix an extension of the p-adic valuation vp to K normalized to vp(p) = 1.

(i) If n > 0 and b = pn then vp(x(P )) = −2/(qn − qn−1).

(ii) If b is not a power of p then vp(x(P )) ≥ 0.

(iii) If p ∤ bc then vp(x(P )− x(Q)) = 0.

14
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Proof. (i) Suppose b = pn with n ≥ 1. Let Ê be the formal group over OKp
. Let π = ψ(p), by

the previous theorem, we have[π](T ) ≡ πT mod deg 2

[π](T ) ≡ T q mod pOp.

Define f(T ) ∈ OKp
to be the power series

f(T ) =
[πn](T )

[πn−1](T )
=

[π][πn−1](T )

[πn−1](T )

and then we have f(T ) ≡ π mod T

f(T ) ≡ T qn−qn−1
.

Thus, by Weierstrass preparation theorem 5.1,

f(T ) = e(T )u(T )

where e(T ) is an Eisenstein polynomial of degree qn − qn−1 and u(x) ∈ O[[T ]]×. By Prop

2.2.2 we have Epn ⊂ E1(Kp), so we get for P ∈ Epn that z = −x(P )/y(P ) is a root of f(T )

and hence of e(T ),

vp(x(P )/y(P )) = (qn − qn−1)−1.

Since for every (x(P ), y(P )) ∈ E1(Kp) we have 3vp(x(P )) = 2vp(y(P )), then we conclude

vp(x(P )) = −2/(qn − qn−1).

(ii) If b is not a power of p then by Prop. 2.2.2 we have P ̸∈ E1(Kp). Hence we conclude

vp(x(P )) ≥ 0.

(iii) Let P̃ , Q̃ the reductions modulo p of P and Q. Then we have

vp(x(P )− x(Q)) > 0⇐⇒ x(P̃ ) = x(Q̃)⇐⇒ P̃ = ±Q̃⇐⇒ P ±Q ∈ E1(Kp).

Since b, c are coprime, then the order of P ±Q is not a power of p. So again, by Prop. 2.2.2

we obtain P ±Q ̸∈ E1(Kp).

We now focus on the case in which p is a split prime and the Lubin Tate group Ê is of height 1.

By Lemma 2.1.1, there is a unique formal. group E defined overOp such that the endomorphism

[π] of E is given by the power series [π](w) = πw + wp. Moreover, by Theorem 2.2, the formal

group E is canonically isomorphic to Ê overOp. Denote Eπn+1 the kernel of the endomorphism

[πn+1] of E . Then we can rewrite Lemma 2.1.2 and Theorem 2.3 as follows.

Theorem 2.7. For each n ≥ 0, Kp(Eπn+1) = Kp(Eπn+1) is a totally ramified extension of degree

pn(p − 1). If un is a generator of Eπn+1 , then its norm is equal to −π. In particular, un is a local

parameter for Kp(Eπn+1). Furthermore, we have

15
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i) the Op-module Eπn is isomorphic to Op/p
n,

ii) the Op-module Eπ∞ is isomorphic to Kp/Op,

iii) Gal(Kp(Eπn)/Kp) is isomorphic to O×
p /(1 + πnOp) and Gal(Kp(Eπ∞)/Kp) is isomorphic to

O×
p .

2.2.2 Ray class fields and extensions with torsion points

Lemma 2.2.3. Let f = (f) be the conductor of the Hecke character ψ of E, and let Ef be the group of

f -division points on E. Then the field K(Ef ) coincides with the ray class field of K modulo f.

Proof. By Theorem B.2 we have that K(f) = K(h(Ef )) ⊆ K(Ef ). Let now A×
K be the idele

group of K, and let U(f) be the subgroup of A×
K corresponding to the ray class field modulo f.

Let ξ(τ) = (℘(τ), ℘′(τ)) be an arbitrary f -division point on E. Let x ∈ U(f) with x∞ = 1. We

must show that the Artin symbol (x,Kab/K) of x fixes ξ(τ). By Theorem B.3.1.(ii) we have

ξ(τ)(x,K
ab/K) = ξ(ψ(x)τ).

But, as f is the conductor of ψ and x ∈ U(f) with x∞ = 1, we have ψ(x) = 1. Hence, (x,Kab/K)

fixes ξ(τ) for any x ∈ U(f) that completes the proof of the lemma.

Lemma 2.2.4. For each integer n ≥ 0, the conductor of Fn = K(Eπn+1) over K is fn = fpn+1.

Moreover, the ray class field K(fn) modulo fn is the compositum of Fn and H = K(Ef ), and Fn ∩H =

K.
K(fn)

Fn K(E[f ])

K

Proof. See [CW77] Lemma 4.

We introduce now two important field extensions that will be largely used in the rest of the

mémoire.

Definition 2.11. For each pair of integers m,n ≥ 0 we define

Fm = K(Eπm+1),

Kn,m = Fm(Eπn).

Prop. 2.2.3. With the previous notation we have the following properties.

(i) The extension Fm/K is unramified at p.

(ii) The extension Kn,m/Fm is totally ramified at the primes above p.

16
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Proof. (i) By Lemma 2.2.4, we have that Fm is contained in the ray class field of K modulo

fpm+1. In particular, Fm is unramified at p.

(ii) First of all notice that we can reduce to study the extension locally. Let ω a prime of Fm
lying above p.

Kn,m,ω = Fm,ω(Eπn)

Kp(Eπn) Fm,ω

Kp

By Theorem 2.3 applied to the elliptic formal group, we have that the extensionKp(Eπn)/Kp

is the splitting field of an Eisenstein polynomial of the form

Xpn−1(p−1) + · · ·+ π.

Since Fm/K is unramified we deduce that the polynomial is Eisenstein over Fm and then

the extension Fm,ω(Eπn)/Fm,ω is totally ramified generated by the same polynomial.

The following lemma gives us the decomposition of p in the previous extensions.

Lemma 2.2.5. Let rm be the number of primes of Fm lying above p. Then rm is given by the index of

the subgroup generated by π in (OK/πm+1)×. In particular, there exists an integer M such that

rm =

r0pm for m < M

r0p
M for m ≥M.

Proof. First of all, observe that by Corollary B.3.2.(ii) we have

Gal(Fm/K)
∼−→ (OK/πm+1)×.

By Corollary B.3.1.(ii), we have that (p, Fm/K) acts on Epm+1 by multiplication by π. In partic-

ular, we have that in the previous isomorphism

(p, Fm/K) 7→ π.

By the previous proposition, p is unramified in Fm and then the number of primes lying above

p is given by the index of (p, Fm/K) in Gal(Fm/K) and then of π in (OK/πm+1)×. Since

lim←−(OK/π
n) ∼= Z×

p
∼= µp× (1+ pZp) with µp p-roots of unity, we have that π has index r0pM for

a certain M ≥ 0.

We then choose and fix pM prime of FM lying above p and let pm denote the unique prime of

Fm lying above or below pM . In this way, we have fixed our choice of extensions in the tower

17
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field. Since Kn,m over Fm is totally ramified by the previous Lemma, we write pn,m for the

unique prime of Kn,m lying above pm.

(Kn,M , pn,M )

(Kn,m, pn,m) (FM , pM )

(Fm, pm)

If ω is any prime of Fm lying above p, we let Ξn,m,ω be the completion of Kn,m at the unique

prime above ω, and we let Φm,ω denote the completion of Fm at ω. We always view our global

fields equipped with embeddings into their completions. We writeRm,ω for the ring of integers

of Φm,ω and we use ω for the maximal ideal ofRm,ω .

Ξn,m,ω

Kn,m Φm,ω

Fm

For simplicity, we shall omit the subscript for the prime when referring to the completions at or

above pm as previously fixed. Let Kp be the completion of K at p, and we shall identify its ring

of integers Op with Zp. We also define the following fields

K∞ =
⋃

n,m≥0

Kn,m, F∞ =
⋃
m≥0

Fm, Φ∞ =
⋃
m≥0

Φm.

Let φ denote the Artin symbol (p, F∞/K) for the extension F∞ overK. By the previous Lemma,

we have F∞ is unramified over K, this implies that φ induces the Frobenius automorphism for

the extension Φ∞/Kp.

We then define the rings

Ξn,m =
∏
ω

Ξn,m,ω, Φm =
∏
ω

Φm,ω, Rm =
∏
ω

Rm,ω

where the product is taken over the set of primes ω of Fm lying above p. The Galois group

G∞ = Gal(K∞/K) acts naturally on these rings as follows. Let (αω,k)k be a Cauchy sequence

of elements of Kn,m (or Fm) which converge to αω in Ξn,m,ω (or Φm,ω). Then the ωσ component

of (αω)σ is the limit of the Cauchy sequence (ασk,ω) in Ξn,m,ωσ (or Φm,ωσ ). We embed Kn,m and

Fm in these rings via the diagonal map. The usual norm and trace maps on Ξn,m, Φm, Kn,m,

and Fm as well as the Galois action, all commute with these embeddings.

We denote by U ′
n,m,ω the units of Ξn,m,ω and by Un,m,ω the subgroup consisting of those units

which are congruent to 1 modulo the maximal ideal. We then define

U ′
n,m =

∏
ω

U ′
n,m,ω, Un,m =

∏
ω

Un,m,ω

18
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where the product is taken over the set of primes ω of Fm lying above p. Furthermore, we

introduce the multiplicative groups

U ′
∞ = lim←−U

′
n,m, U∞ = lim←−Un,m

where the projective limit is taken with respect to the norm maps on the Ξn,m. We endow U∞

with its natural structure as a Zp[G∞]-module.

2.2.3 Action of G∞ and structure of Zp[Λ]-module

We denote G∞ the Galois group of K∞/K. From the theory of Lubin-Tate groups we deduce

the following properties of the action of G∞.

Lemma 2.2.6. The action of G∞ on Eπ∞ and Eπ∞ induces two characters

k1 : G∞ → Z×
p , k2 : G∞ → Z×

p

with the property that for σ ∈ G∞ and α ∈ OK such that

uσ = αu

for all u ∈ Eπm+1 then k2(σ) is given by

k2(σ) ≡ α mod pm+1, k2(σ) ≡ α mod pm+1

where we have used the identification of Zp with Op.

Proof. First of all observe that the extensions F∞/K andK(Eπ∞)/K are totally ramified respec-

tively at p and p. Then the global Galois group coincides with the local one. By Theorem 2.3

applied to the elliptic curve case, we have

Gal(F∞/K)
∼−→ (lim←−

n

O/pn)× ∼= Z×
p ,

Gal(K(Eπ∞)/K)
∼−→ (lim←−

n

O/pn)× ∼= Z×
p

that define the maps k1, k2. Observe that the theorem depends on the fact that Eπn is a free

O/pn-module of rank 1. If for all u ∈ Eπm+1 we have uσ = αu for σ ∈ G∞ and α ∈ OK we have

that σ correspond to an element in (O/pm+1)× that could be represented by an integer modulo

pm+1 through the isomorphism O/pm+1 ∼= Z /pm+1 Z.

Theorem 2.8. The Galois group of G∞ is of the form

G∞ = Γ×∆

where Γ = Zp×Zp ∼= Gal(K∞,K0,0) and ∆ = (Z /(p− 1)Z)× (Z /(p− 1)Z) ∼= Gal(K0,0/K).

Proof. By the previous Lemma, we have that Gal(K[π∞]/K) and Gal(K[π∞]/K) are isomor-

phic to Z×
p . Furthermore observe that from Corollary B.3.2.(ii) we have

Gal(K(E[πn+1πm+1]/K) = Gal(Kn,m/K)
∼−→ (OK/pn+1pm+1)× ∼=

∼= (OK/pn+1)× × (OK/pm+1)×
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Since K∞ is generated by K(Eπ∞),K(Eπ∞) we deduce

(k1, k2) : G∞
∼−→ Z×

p ×Z×
p .

Furthermore, we have

Gal(K0,0/K)
∼−→ (OK/pp)× ∼= (Z /pZ)× × (Z /pZ)× = ∆.

From the isomorphism Z×
p
∼= (Z /(p− 1)Z)× Zp we conclude

Γ = Zp×Zp ∼= Gal(K∞,K0,0).

We denote by χ1, χ2 the restriction of k1, k2 to ∆. Together they generate Hom(∆,Z×
p ).

Let Λ = Zp[[T1, T2]] be the ring of formal power series in two indeterminates. Let u a topological

generator of (1 + pZp) and let γ1, γ2 two elements of Γ for which

k1(γ1) = u, k2(γ1) = 1,

k1(γ2) = 1, k2(γ2) = u.

In particular, any Zp-module B on which Γ acts continuously can be endowed with a unique

Λ-module structure such that

γ1x = (1 + T1)x,

γ2x = (1 + T2)x

for all x ∈ B.
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Elliptic units

This chapter is the essential core of the whole mémoire. We define the elliptic units and we

study the relation with special values of L-functions. The elliptic units will be defined as certain

rational functions of x-coordinates of torsion points on a CM elliptic curve. In particular, they

are units in abelian extension of quadratic imaginary fields, they play a role analogous to that

of circular units in abelian number fields.

The bridge between special values of Hecke L series associated with K and elliptic units is

provided by special values of Eisenstein series. Following De Shalit’s [DS87] approach we will

call them Eisenstein numbers since their role parallels the role Bernoulli numbers play in the

cyclotomic theory.

3.1 Theta functions

We start studying the rational function ΘE,a on the elliptic curve. We will explore its properties

from both the algebraic point of view and from the complex analytical one.

3.1.1 Theta function over K

LetK be an imaginary quadratic field with ring of integersOK and assumeK has class number

1. Consider E an elliptic curve defined over K with complex multiplication by OK . Let S be

the set of finite primes q with bad reduction together with 2,3. Fix a Weierstrass model for E

y2 = 4x3 − g2x− g3 (3.1)

such that the discriminant of (3.1) is divisible only by primes of K lying above primes in S (See

[Sil94].VIII.8). In particular, let ℘(z) be the Weierstrass function associated with (3.1) and L the

period lattice of ℘(z). Then we have a group isomorphism

ξ : C /L→ E(C)

z 7→ (℘(z), ℘′(z)).
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As usual, we identify EndK(E) withO in such a way that the endomorphism corresponding to

α ∈ O is ξ(z) 7→ ξ(αz). Furthermore, there exists Ω∞ ∈ C such that L = Ω∞O. Let a ⊆ OK be

an integral ideal of K prime to the ideals in S. We denote Na the absolute norm of a and a−1L

denotes the lattice Ω∞a−1.

Definition 3.1. Define ΘE,a a rational function on E with coordinate functions x, y by

ΘE,a := α−12∆(E)Na−1
∏

P∈Ea−O
(x− x(P ))−6. (3.2)

Lemma 3.1.1. Let a be an integral ideal of K

(i) ΘE,a is independent of the choice of the Weierstrass model.

(ii) if φ : E′ → E is an isomorphism of elliptic curves then ΘE′,a = ΘE,a ◦ φ.

(iii) ΘE,a is a rational function on E defined over K with divisor

12Na[O]− 12
∑
P∈Ea

[P ]. (3.3)

Proof. (i) Any other Weierstrass model has coordinate functions x′, y′ given byx′ = u2x+ r

y′ = u3y + sx+ t

with u ∈ C×, and then a′i = uiai and

∆(E′) = u12∆(E).

By Prop. B.0.1 we have #Ea = Na and then we obtain

ΘE′,a = α−12∆(E′)Na−1
∏

P∈Ea−O
(x′ − x′(P ))−6 =

= α−12∆(E)Na−1u12Na−1
∏

P∈Ea−O
u−12(x− x(P ))−6 = ΘE,a.

(ii) In the previous point we showed ΘE,a is independent of the Weierstrass model. Fix a

Weierstrass model for E with coordinate function x, y and consider the Weierstrass model

induced by φ with coordinate functions x′ = x ◦ φ, y′ = y ◦ φ. In particular we have

∆(E) = ∆(E′) Then applying φ we get

ΘE,a ◦ φ = α−12∆(E)Na−1
∏

P∈Ea−O
(x ◦ φ− x(P ))−6 = ΘE′,a.

(iii) Observe that α ∈ K, ∆(E) ∈ K and Gal(K/K) permutes the set {x(P ) : P ∈ Ea − O}
so Gal(K/K) fixes ΘE,a. The coordinate function x is an even rational function with a

double pole at O and no other poles. Thus for every point P , the divisor of x − x(P ) is

[P ] + [−P ]− 2[O]. Since #Ea = Na we conclude

div(ΘE,a) =
∑

P∈E[a]−O

(6[P ] + 6[−P ]− 12[O]) = 12Na[O]− 12
∑
P∈Ea

[P ].
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The following theorem is the fundamental result of this section and it will be the key in the

construction of the elliptic units.

Theorem 3.1. Let b a nontrivial ideal of OK relatively prime to a, let Q ∈ Eb be a primitive b-division

point.

(i) ΘE,a(Q) ∈ K(b).

(ii) If c is an ideal of OK prime to b, c a generator of c, and σc = (c,K(b)/K) its Artin symbol. Then

we have

ΘE,a(Q)σc = ΘE,a(cQ)

(iii) If b is not a prime power then ΘE,a(Q) is a global unit of K(b). If b is a power of p then ΘE,a(Q)

is a unit at primes not dividing p.

Proof. (i) By the previous lemma, we have ΘE,a belongs to the function field K(E). Let ψ

be the Hecke character associated to E by Theorem B.3. Then consider x ∈ U(b) ⊂ A×
K

an element in the Ray class group modulo b with x∞ = 1. In particular we have x ≡ 1

mod ×b and let σx = (x,Kab/K) its Artin symbol. By Corollary B.3.1 we have

Qσx = ψ(x)Q.

where ψ(x) ∈ O×
K induces an automorphism of E through the isogeny associated. There-

fore we obtain the chain of equalities

ΘE,a(Q)σx = ΘE,a(Q
σx) = ΘE,a(ψ(x)Q) = ΘE,a(Q)

where the last equality follows by Lemma 3.1.1.(ii).

(ii) Let now x ∈ A×
K be an idele with xO = c and xp = 1 for p dividing b. Then by Corollary

B.3.1 we have ψ(x) ∈ cO× and ψ(x)Q = Qσc . So again using Lemma 3.1.1.(ii),

ΘE,a(Q)σc = ΘE,a(ψ(x)Q) = ΘE,a(cQ).

(iii) Let p be a prime ofK such that b is not a power of p. Up to consider a different Weierstrass

model, we can assumeE has good reduction at p, so that ∆(E) is prime to p. Let n = vp(a).

Then

vp(ΘE,a(Q)) =− 12n− 6
∑

P∈Ea−O
vp(x(Q)− x(P )) =

=− 12n− 6
∑

P∈Epn−O
vp(x(Q)− x(P ))−

− 6
∑

P∈Ea−Epn

vp(x(Q)− x(P )).

By Lemma 2.2.2, since b is not a power of p we get

vp(x(Q)− x(P )) =

=

−2/(Npm −Npm−1) if P has order exactly pm,m > 0

0 if the order of P is not a power of p.
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From this we get

vp(ΘE,a(Q)) = −12n− 6

n∑
i=1

∑
P∈Epi−Epi−1

vp(x(Q)− x(P )) = 0.

Observe that if b is not a prime power then ΘE,a(Q) is unit for every prime. Otherwise, if

b = pn then ΘE,a(Q) is a unit outside of p.

Theorem 3.2 (Distribution relation). Let b an integral ideal of K, relatively prime to a, let b ∈ OK
any generator of b. Then we have ∏

R∈Eb

ΘE,a(P +R) = ΘE,a(βP )

where the product is taken over the b-torsion points.

Proof. First of all, observe that both sides of the equation are rational functions onE. By Lemma

3.1.1, we can compute the divisors

div(ΘE,a(P +R)) = 12Na[−R]− 12
∑
Q∈Ea

[Q−R]

div

( ∏
R∈Eb

ΘE,a(P +R)

)
=
∑
R∈Eb

12Na[R]− 12
∑
R∈Eb

∑
Q∈Ea

[Q+R]

for R ∈ Eb. Since a, b are coprime we deduce [Q+R] runs over all ab-torsion points for Q ∈ Ea

and R ∈ Eb. We can then rewrite

div

( ∏
R∈Eb

ΘE,a(P +R)

)
=
∑
R∈Eb

12Na[R]− 12
∑

Q∈Eab

[Q].

We conclude by observing that the last equation coincides with the divisor of ΘE,a(βP )

div(ΘE,a(βP )) =
∑
R∈Eb

12Na[R]− 12
∑

Q∈Eab

[Q].

Thus their ratio is a constant λ ∈ K×, and we need to show λ = 1. Let ωK = #(OK)× and fix a

generator α of a. Using the definition in (3.7) we can evaluate the ratio at P = O

λ =

∏
R∈Eb

ΘE,a(P +R)

ΘE,a(βP )
|P=O =

=
α−12Nb∆(E)(Na−1)Nb

∏
R∈Eb

∏
Q∈Ea−{O}(x(P +R)− x(Q))−6

α−12∆(E)Na−1
∏
Q∈Ea−{O}(x(βP )− x(Q))−6

|P=O =

=
∆(E)(Na−1)(Nb−1)

α12(Nb−1)β12(Na−1)

∏
R∈Eb−{O}

∏
Q∈Ea−{O}

(x(R)− x(Q))−6 = µωK

where

µ =
∆(E)(Na−1)(Nb−1)/ωK

α12(Nb−1)/ωKβ12(Na−1)/ωK

∏
R∈Eb−{O}

∏
Q∈Ea−{O}

(x(R)− x(Q))−6/ωK = µωK .
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From the fact that (a, 6) = 1 we then deduce that Na − 1 is divisible by ωK . Since ωK divides

12, then all of the exponents in the definition of µ are integers. Furthermore, µ is fixed by

Gal(K/K) and then we deduce µ ∈ K×. Let q a prime ideal of K, then we have

ωKvq(µ) = −12(Nb− 1)vq(a)− 12(Na− 1)vq(b)− 6
∑

R∈Eb−O

∑
Q∈Ea−O

vq(x(R)− x(Q)).

Since a, b are coprime we have that q divides only one or neither of them. By Lemma 2.2.2, we

then have

vq(x(R)− x(Q)) =


−2/(Nqm −Nqm−1) if R has order exactly qm,m > 0

−2/(Nqm −Nqm−1) if Q has order exactly qm,m > 0

0 if the order of P and Q is not a power of q.

Analogously to the computations in the proof of Theorem 3.1, we deduce vq(µ) = 0 for every

prime q and then µ is a unit. We conclude λ = µωK = 1.

Corollary 3.2.1. Let b an integral ideal of K coprime to a, Q ∈ Eb be a primitive b-torsion point, p a

prime ideal dividing b, π be a generator of p, and b′ = b/p. Let e = ωb′/ωb then

NK(b)/K(b′)ΘE,a(Q)e =

ΘE,a(πQ) if p|b′

ΘE,a(πQ)1−σ
−1
p if p ∤ b′

where in the latter case σp = (p,K(b′)/K) is the Frobenius of p in Gal(K(b′)/K).

Proof. Let U denote the multiplicative group U = 1 + b′(O/b). By Theorem A.4 we have the

following diagram

U Gal(K(b)/K(b′)) 1 1

1 O×
K/(O

×
K ∩Kb,1) Kb/Kb,1 ClbK ClK 1

1 O×
K/(O

×
K ∩Kb′,1) Kb′

/Kb′,1 Clb
′

K ClK 1

where Kb/Kb,1 ∼= (OK/b)× and Kb′
/Kb′,1 ∼= (OK/b′)×. Applying the Snake Lemma we get

the following map is surjective

U ↠ Gal(K(b)/K(b′))

denote by u 7→ σu with kernel of cardinality e = ωb′/ωb. Therefore, by Theorem 3.1.(ii) we have

NK(b)/K(b′)ΘE,a(Q)e =
∏
u∈U

Θσu

E,a =
∏
u∈U

ΘE,a(uQ).

We then now observe

{uQ : u ∈ U} = {P ∈ E[b] : πP = πQ, P ̸∈ E[b′]} =

=

{Q+R : R ∈ Ep} if p|b′

{Q+R : R ∈ Ep, R ̸≡ −Q(mod Eb′)} if p ∤ b′.

25



CHAPTER 3: ELLIPTIC UNITS

Thus by Distribution relation Theorem 3.2, if p|b′ we have

NK(b)/K(b′)ΘE,a(Q)e =
∏
R∈Ep

ΘE,a(Q+R) = ΘE,a(πQ).

Similarly, if p ∤ b′

ΘE,a(Q+R0)NK(b)/K(b′)ΘE,a(Q)e = ΘE,a(πQ)

where R0 ∈ Ep satisfies Q+R0 ∈ Eb′ . By Theorem 3.1.(ii) we have

ΘE,a(Q+R0)
σp = ΘE,a(πQ+ πR0) = ΘE,a(πQ)

so this completes the proof.

3.1.2 Functions on complex lattices

In order to study the theta function from the complex analytical point of view we recall the

definition and properties of some classical complex functions.

Let L = Zω1 + Zω2 be a lattice in C, whose basis is ordered so that τ = ω1/ω2 belongs to the

upper half-plane.

Definition 3.2. Let σ(z, L) be the Weierstrass’s σ-function and Ramanujans’s ∆ function defined by

the absolutely convergent products

σ(z, L) = z
∏

ω∈L−{0}

(
1− z

ω

)
exp

(
z

ω
+

1

2

( z
ω

)2)

∆(L) =

(
2π

ω2

)12

qτ

∞∏
n=1

(1− qnτ )24, qτ = exp(2πiτ).

Definition 3.3. For a lattice L define

A(L) := π−1area(C /L) = (2πi)−1(ω1ω2 − ω2ω1)

s2(L) := lim
s→0+

∑
ω∈L−{0}

ω−2|ω|−2s

η(z, L) := A(L)−1z + s2(L)z

In particular, the Weierstrass’s σ-function of L satisfies the following transformation law.

Lemma 3.1.2 (Transformation law). Let ω ∈ L, then we have the following identity

σ(z + ω,L) = ±σ(z, L) exp
(
η(ω,L)

(
z +

ω

2

))
(3.4)

Proof. See [We] Chapter IV,3-4.

Definition 3.4. Define the fundamental theta function θ as

θ(z, L) := ∆(L) exp(−6η(z, L)z)σ(z, L)12. (3.5)

The theta function is non-holomorphic due to z in η(z, L).
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We have the following useful homothetic relation.

Lemma 3.1.3. For every c ∈ C non-zero we have

θ(cz, cL) = θ(z, L). (3.6)

Proof. By definition we have

η(cz, cL) = A(cL)−1cz + s2(cL)cz = c−1η(z, L)

and

σ(cz, cL) = cz
∏

ω∈L−{0}

(
1− cz

cω

)
exp

(
z

ω
+

1

2

(
c
z

cω

)2)
= cσ(z, L).

We conclude

θ(cz, cL) = ∆(cL) exp(−6η(cz, cL)cz)σ(cz, cL)12 =

= c−12∆(L) exp(−6η(z, L)z)c12σ(z, L)12 = θ(z, L).

3.1.3 Theta functions over C

Let a ⊆ OK be an integral ideal of K prime to the ideals in S. We denote Na the absolute norm

of a and a−1L denotes the lattice Ω∞a−1.

Definition 3.5. Define Θ(z, a) as an elliptic function

Θ(z, a) = α−12∆(L)Na−1
∏

u∈a−1L/L−{0}

(℘(z)− ℘(u))−6 (3.7)

where the product is taken over a set of representatives {u} of the non-zero cosets of a−1L/L. Recall that

the number of cosets a−1L/L is Na.

From this equation, it follows Θ(z, a) = ΘE,a ◦ ξ. In particular, we can restate the results of

Section 3.1.1 in terms of complex L-elliptic functions.

Theorem 3.3. Let b a nontrivial ideal ofOK relatively prime to a, let v ∈ b−1L be a primitive b-division

point.

(i) Θ(v, a) ∈ K(b).

(ii) If c is an ideal of OK prime to b, c a generator of c, and σc = (c,K(b)/K) its Artin symbol. Then

we have

Θ(v, a)σc = Θ(cv, a)

(iii) If b is not a prime power then Θ(v, a) is a global unit of K(b). If b is a power of p then Θ(v, a) is

a unit at primes not dividing p.
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Theorem 3.4 (Distribution relation). Let a and b be integral ideals ofK, relatively prime to each other,

let β ∈ OK any generator of b. Then we have∏
v∈b−1L/L

Θ(z + v, a) = Θ(βz, a)

where the product is taken over the set of representatives of b-division points.

Prop. 3.1.1. Θ(z, a, L) = θ(z, L)Na/θ(z, a−1L).

Proof. Let f(z) = θ(z, L)Na/θ(z, a−1L) then we have that f(z) is meromorphic. Indeed, we

have explicitly

f(z) =
∆(L)Naσ(z, L)12Na

∆(a−1L)σ(z, a−1L)12
exp[−6z(Naη(z, L)− η(z, a−1L))].

In particular, we have that the factor containing z cancels out

Naη(z, L)− η(z, a−1L) = NaA(L)−1z +Nas2(L)z −A(a−1L)−1z − s2(a−1L)z =

= Nas2(L)z − s2(a−1L)z.

We conclude f(z) is meromorphic. Furthermore, f(z) is periodic with respect to L. In fact,

using the transformation law 3.1.2 we have for every ω ∈ L

σ(z + ω,L)12Na

σ(z + ω, a−1L)12
=
σ(z, L)12Na exp

(
12Naη(ω,L)

(
z + ω

2

))
σ(z, a−1L) exp

(
η(ω, a−1L)

(
z + ω

2

)) =

=
σ(z, L)12Na

σ(z, a−1L)
exp

((
z +

ω

2

) (
12Naη(ω,L)− η(ω, a−1L)

))
and

η(z + ω,L) = A(L)−1(z + ω) + s2(L)(z + ω) = η(z, L) + η(ω,L).

Then we conclude f(z+ω) = f(z). From the explicit definition of σ we have that the divisor of

θ(z, L) is given by

12Na[0]−
∑

u∈a−1L/L

[u].

By Lemma 3.1.1 we deduce Θ(z, L) = λf(z) with λ ∈ C× constant. Both functions have Laurent

series beginning with α−12∆(L)12(Na−1)z12(Na−1), so λ = 1.

Corollary 3.4.1. Let b a nontrivial ideal of OK relatively prime to a, let v ∈ b−1L be a primitive b-

division point. If c is an ideal of OK prime to b, and σc = (c,K(b)/K) its Artin symbol. Then we

have

Θ(v, a)σc = Θ(v, ac)Θ(v, c)−Na.

Proof. Recall that by Theorem 3.3 we have

Θ(v, a)σc = Θ(cv, a)

with c a generator of c. Then by the previous proposition, we get

Θ(v, a)σc =
θ(cz, L)Na

θ(cz, a−1L)
=

θ(z, cL)Na

θ(z, c−1a−1L)
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where the last equality follows from Lemma 3.1.3. Then we conclude

θ(z, cL)Na

θ(z, c−1a−1L)
=
θ(z, c−1L)Na

θ(z, ca−1L)
· θ(z, L)

Nac

θ(z, L)Nac
= Θ(z, ac)Θ(z, c)−Na.

3.2 Eisenstein series and L-functions

3.2.1 Eisenstein numbers

Let L be a lattice in the complex plane generated by ω1 and ω2 with ℑ(ω2/ω1) > 0. Recall that

we have A(L) = (2πi)−1(ω2ω1 − ω1ω2) is the area of the lattice L.

Definition 3.6. We define a pairing for z, w ∈ C by

⟨z, w⟩L = exp

(
zw − wz
A(L)

)
Lemma 3.2.1. For a, z, w ∈ C the pairing has the following properties.

(i) ⟨z, w⟩L = ⟨−w, z⟩L = ⟨w, z⟩−1
L ,

(ii) ⟨az, w⟩L = ⟨z, aw⟩L,

(iii) z ∈ L if and only if ⟨z, ω⟩L = 1 for all ω ∈ L.

Definition 3.7. For each integer k ≥ 1, z ∈ C−L, and w ∈ C, we define the Eisenstein-Kronecker-

Lerch series Hk(z, w, s, L) by

Hk(z, w, s, L) =
∑
γ∈L

(z + γ)k

|z + γ|2s
⟨γ,w⟩L, ℜs > k/2 + 1.

For a fixed z0, w0 ∈ C, we define H∗
k(z0, w0, s, L) by

H∗
k(z0, w0, s, L) =

∗∑
γ∈L

(z0 + γ)k

|z0 + γ|2s
⟨γ,w0⟩L, ℜs > k/2 + 1.

where the sum is take over all ω ∈ L other than −z0 if z0 ∈ L. The series converges absolutely for

ℜs > k/2 + 1

Observe that Hk(z, w, s, L) = H∗
k(z, w, s, L) if z ∈ C−L.

Prop. 3.2.1. Let k ≥ 1 be an integer.

(i) The function Γ(s)H∗
k(z, w, s, L) for s continues meromorphically to a function on the whole com-

plex plane, with possible poles only at

(a) k = 0, z ∈ L with simple pole at s = 0 and residue ⟨−z, w⟩;

(b) k = 0, w ∈ L with simple pole at s = 1 and residue A(L)−1 if w = 0.
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(ii) H∗
k(z, w, s, L) satisfies the functional equation

Γ(s)H∗
k(z, w, s, L) = A(L)k+1−2sΓ(k + 1− s)H∗

k(w, z, k + 1− s, L)⟨w, z⟩L.

Proof. See [Wei76], VIII, 12.

The function z 7→ H∗
k(z, w, s, L) is even or odd if k is even or odd. Furthermore, it is periodic of

period L. Let D the differential operator defined by

D = z
∂

∂z
+ ω1

∂

∂ω1
+ ω2

∂

∂ω2
.

Observe that in particular, we have D(A(L)) = 0. The Eisenstein-Kronecker-Lerch series for

various integers k and s are related by the following differential equations.

Lemma 3.2.2. Let k > 0 be an integer. The function Hk(z, w, s) satisfied the differential equations

∂zHk(z, w, s) = −sHk+1(z, w, s+ 1),

∂zHk(z, w, s) = (k − s)Hk−1(z, w, s),

∂wHk(z, w, s) = −A−1(Hk+1(z, w, s)− zHk(z, w, s)),

∂wHk(z, w, s) = A−1(Hk−1(z, w, s− 1)− zHk(z, w, s)),

DHk(x, 0, s) = −sHk+2(x, 0, s+ 1)

Proof. The proof follows by the definition of the Eisenstein-Kronecker-Lerch series for ℜs >
a/2 + 1. The statement for general s is obtained by analytic continuation.

Definition 3.8. Let z0, w0 ∈ C. For any integer k > 0, j ≥ 0, we define the Eisenstein-Kronecker

number Ej,k(z0, w0, L) by

Ej,k(z0, w0, L) = H∗
j+k(z0, w0, k, L) =

=
∑
γ∈L

(z0 + w0)
j

(z0 + γ)k
⟨γ,w0⟩ if k ≥ j + 3.

For simplicity we will omit the variable w when we will consider w ∈ L, Ej,k(z, L) = Ej,k(z, 0, L).

Definition 3.9. For k ≥ 1 define the Eisenstein series by

Ek(z, L) = H∗
k(z, 0, k, L) =

=
∑
γ∈L

1

(z + γ)k
if k ≥ 3.

In particular we have Ek(z, L) = E0,k(z, L).

By definition, we have the following homogeneity properties.

Lemma 3.2.3. For every λ ∈ C× and every k > j ≥ 0 we have

(i) Ek(λz, λL) = λ−kEk(z, L),

(ii) Ej,k(λz, λL) =
λ
j+k

|λ|2k
Ej,k(z, L).
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Lemma 3.2.4. (i) E1(z, L) =
d

dz
log(σ(z, L))− s2(L)z −A(L)−1z,

(ii) E2(z, L) = −
d

dz
E1(z, L) = ℘(z, L) + s2(L),

(iii) Ek(z, L) =
(−1)k

(k − 1)!

(
d

dz

)k−2

℘(z, L) if k ≥ 3.

(iv) Ej,k(z, L) =
(−1)k−1

(k − 1)!
Dj∂k−j−1

z E1(z, L) for all k > j ≥ 0.

Proof. See [Wei76].

Prop. 3.2.2. For k > j ≥ 0 integers, exists a polynomial Pj,k in j + k indeterminates, of degree j + 1,

with integer coefficients such that

Ej,k(z, L) =
(A(L)/2)j

(k − 1)(k − 2) · · · (k − j)
Pj,k(E1(z, L), . . . , Ej+k(z, L))

Proof. See [Wei76].VI.4.

3.2.2 Relation with L-values

Definition 3.10. Define the HeckeL-functions associated to powers of ψ to be the analytic continuations

of the Dirichlet series

L(ψ
k
, s) =

∑
b

ψ
k
(b)

Nbs

summing over integral ideals b of K prime to the conductor of ψ
k
. If m is an integral ideal of K divisible

by f and σ ∈ Gal(K(m)/K) then we define the partial Dirichlet series

LK(m)(ψ
k
, s, σ) =

∑
(b,K(m)/K)=σ

ψ
k
(b)

Nbs

where the sum is restricted to the integral ideals of K prime to m whose Artin symbol for the extension

K(m)/K is σ.

Theorem 3.5. Let m be an integral ideal of K divisible by f, and consider ρ a m-division point. Then for

every k > j ≥ 0,

Ek(ρ, L) = ρ−kψ(c)kLK(m)(ψ
k
, k, c), (3.8)

Ej,k(ρ, L) = ρ−j−kNm−j |Ω∞|2jψ(c)j+kLK(m)(ψ
j+k

, k, c). (3.9)

where c = Ω−1
∞ ρm.

Proof. Let m ∈ O be a generator of m, then we have ρ = αΩ∞/m for some α ∈ O prime to m.

Then we have for ℜs > k/2 + 1

H∗
k(ρ, 0, s, L) =

∑
ω∈L

(ρ+ w)k

|ρ+ w|2s
=
∑
β∈O

(αΩ∞/m+Ω∞β)
k

|αΩ∞/m+ βΩ∞|2s
=

=
Nms

mk

Ω∞
k

|Ω∞|2s
∑
β∈O,

β≡α mod m

β
k

|β|2s
.
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By definition of the Hecke character ψ we can define

ε(β) = ψ(βO)/β

to be a multiplicative map from {β ∈ O : (βO, f) = 1} to O×. By definition of the conductor, ε

factors through (O/f)×. Thus if β ≡ α mod m, we have ε(β) = ε(α) and then

β = ψ(βO)ψ(αO)
α

.

Therefore we can rewrite∑
β∈O,

β≡α mod m

β
k

|β|2s
=
ψ(αO)k

αk

∑
(b,K(m)/K)=(a,K(m)/K)

ψ
k
(b)

Nbs
=

=
ψ(c)k

αk
LK(m)(ψ

k
, s, c)

where c = αO = ρmΩ−1. In particular, we then conclude

Ek(ρ, L) = H∗
k(ρ, 0, k, L) =

mk

αkΩk∞
ψ(c)LK(m)(ψ

k
, k, c)

where we recall ρ = αΩ∞/m. Analogously we have

Ej,k(ρ, L) = H∗
j+k(ρ, 0, k, L) =

Nmk

mj+k

Ω∞
j+k

|Ω∞|2k
ψ(c)j+k

αj+k
LK(m)(ψ

j+k
, k, c)

= ρ−j−kNm−j |Ω∞|2jψ(c)j+kLK(m)(ψ
j+k

, k, c).

Corollary 3.5.1. Let m be an integral ideal of K divisible by f, and consider ρ a m-division point. Let

B a set of ideals of OK , prime to m such that the Artin map b 7→ (b,K(m)/K) is a bijection from B to

Gal(K(m)/K). Then for every k > j ≥ 0,∑
b∈B

Ek(ψ(b)ρ, L) = ρ−kLK(m)(ψ
k
, k),

∑
b∈B

Ej,k(ψ(b)ρ, L) = ρ−(j+k)Nm−j |Ω∞|2jLK(m)(ψ
j+k

, k)

Proof. Applying the previous theorem∑
b∈B

Ek(ψ(b)ρ, L) = ρ−k
∑
b∈B

ψ(b)−kψ(cb)
kLK(m)(ψ

k
, k, cb)

where cb = Ω−1
∞ ψ(b)ρm. Since ρ is a m-division point, we haveO = Ω−1

∞ ρm and then cb = b. We

can then rewrite∑
b∈B

Ek(ψ(b)ρ, L) = ρ−k
∑
b∈B

LK(m)(ψ
k
, k, b) = ρ−kLK(m)(ψ

k
, k).

Analogously we have∑
b∈B

Ej,k(ψ(b)ρ, L) =
∑
b∈B

ψ(b)−j−kρ−j−kNm−j |Ω∞|2jψ(cb)j+kLK(m)(ψ
j+k

, k, cb) =

= ρ−j−kNm−j |Ω∞|2jLK(m)(ψ
j+k

, k)
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Theorem 3.6. For all integral ideal a of K, we have that the Laurent expansion of logΘ(z, a) at z0 ∈ C
is given by

d

dz
logΘ(z, a) = 12

∑
k≥1

(−1)k(NaEk(z0, L)− Ek(z0, a−1L))(z − z0)k−1.

Proof. First of all observe that from the definition 3.4 of θ(z, L) we have

log(θ(z, L)) = log(∆(L))− 6s2(L)z
2 − 6A(L)−1zz + 12 log(σ(z, L)),

d

dz
log(θ(z, L)) = −12s2(L)z − 6A(L)−1z + 12

d

dz
log(σ(z, L))

Then from Prop. 3.1.1 we get

d

dz
logΘ(z, a) =Na

d

dz
log θ(z, L)− d

dz
log θ(z, a−1L) =

=−Na

(
12s2(L)z + 6A(L)−1z − 12

d

dz
log(σ(z, L))

)
+

+ 12s2(a
−1L)z + 6A(a−1L)−1z − 12

d

dz
log(σ(z, a−1L)).

Since A(a−1L) = A(L)Na then using the Lemma 3.2.4 we get that the right-hand side of the

previous equation is equal to

d

dz
logΘ(z, a) = 12NaE1(z, L)− 12E1(z, a

−1L).

By repeated differentiation using Lemma 3.2.4 we obtain(
d

dz

)k
logΘ(z, a) = 12(−1)k(k − 1)!

(
NaEk(z, L)− Ek(z, a−1L)

)
.

Corollary 3.6.1. Let m be an integral ideal of K, and consider ρ an m-division point. Then for every

integral ideal b of K coprime with m, the following hold

(i) Ek(ρ, L) ∈ K(Em),

(ii)
(
A(L)

2

)−j

Ej,k(ρ, L) ∈ K(Em)

(iii) Ek(ρ, L)σb = Ek(ψ(b)ρ, L),

where σb is the Artin symbol associated to b.

Proof. First of all, observe that since Θ(z, L) is a rational function in ℘(z, L) with coeffiecients

in K, then by addition theorem we deduce that Θ(z + ρ, L) is a rational function in ℘(z, L) and

℘′(z, L) with coefficients in K(Em). By the previous theorem we conclude that the coefficients

of the Laurent expansion

(−1)k(k − 1)!(NaEk(ρ, L)− Ek(z0, a−1L))(z − ρ)k
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are in K(Em). Consider now α ∈ OK such that α ≡ 1 mod m and take a = (α). In particu-

lar we then have αρ ≡ ρ mod L. By homogeneity property of the Eisenstein series we have

Ek(ρ, a
−1L) = αkEk(αρ,L) and then we conclude(

d

dz

)k
logΘ(z, a) = (−1)k−112(k − 1)!(Nα− αk)Ek(ρ, L).

This proves that Ek(ρ, L) belongs to K(Em). By Prop. 3.2.2 we deduce (ii). Furthermore,

considering b an integral ideal ofK coprime with m and applying σb to the previous expression

we get

Ek(ρ, L)
σb =

(−1)k

12(k − 1)!(Na− αk)

((
d

dz

)k
logΘ(z + ρ, a)σb |z=0

)
=

=
(−1)k

12(k − 1)!(Na− αk)

((
d

dz

)k
logΘ(z + ψ(b)ρ, a)|z=0

)
=

=Ek(ψ(b)ρ, L)

that concludes the proof.

3.3 Elliptic units

For simplicity, denote Hm = K
(
fpm+1

)
and Hn,m = K

(
fpn+1p

m+1
)

the Ray class fields of K

respectively modulo fpm+1 and fpn+1p
m+1. Recall that by Lemma 2.2.4 we have the following

diagram of extensions of fields.

Hn,m

Hm Kn,m

K(E[f ]) Fm

K

In the previous section, we have seen two special properties of Eisenstein numbers. The first is

that they are related to values of L series and the second one is that the appear in the Laurent

expansion of the logarithm of theta function. In order to construct a measure that interpolates

some special L values, we construct a new rational function as product of translated theta

function. The exactly relation between the lambda function and the L values is provided in

Theorem 3.7.

Definition 3.11. Let ρ = Ω∞/f and let B be a set of integral ideals of K prime to f such that the set

of elements (b,K(f)/K) for b ∈ B is a set of representatives for the Galois group Gal(K(f)/K). For a

integral ideal of K prime to 6pf, we set

Λ(z, a) =
∏
b∈B

Θ(z + ψ(b)ρ, a).
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We can extend the previous definition to higher ray class fields in the following way.

Definition 3.12. Let ρm = Ω∞/fπ
m+1 and letBm be a set of integral ideals ofK prime to fp such that

the set of elements (b, Hm/K) for b ∈ Bm is a set of representatives for the Galois group Gal(Hm/Fm).

For a integral ideal of K prime to 6pf, we set

Λm(z, a) =
∏

b∈Bm

Θ(z + ψ(b)ρm, a).

Lemma 3.3.1. The functions Λ(z, a) and Λm(z, a) are rational functions of ℘(z) and ℘′(z) with coeffi-

cients respectively in K and Fm. They are independent of the choice of the set of ideals B and Bm.

Proof. We prove directly the statement for Λm(z, a). First of all observe that ρm is a torsion

point ρm ∈ E[fπm+1] and then by Lemma 2.2.4 we have ρm ∈ E(Hm). Since Θ(z, a) is a rational

function of ℘(z) with coefficients in K, we deduce by the addition formula that Θ(z + ρm, a) is

a rational function of ℘(z) and ℘′(z) with coefficients in Hm. If b is an integral ideal prime to fp,

then by Corollary B.3.1.(ii) we have

ξ(ρm)(b,Hm/K) = ξ(ψ(b)ρm).

In particular, we obtain the function Θ(z+ψ(b)ρm, a) applying (b, Hm/K) to the coefficients of

Θ(z + ρm, a). We conclude the function Λm is independent of the choice of Bm.

Theorem 3.7. For all integral ideal a of K and m ≥ 0, we have the following Laurent expansions

d

dz
log Λ(z, a) = 12

∑
k≥1

(−1)k−1fkΩ−k
∞ (Na− ψ(a)k)LK(f)(ψ

k
, k)(z − z0)k−1,

d

dz
log Λm(π−(m+1)z, a) = 12

∑
k≥1

(−1)k−1fkΩ−k
∞ (NaLFm

(ψ
k
, k, 1)− ψk(a)LFm

(ψ
k
, k, a).

Proof. By definition of Λ we have

log Λ(z, a) =
∑
b∈B

logΘ(z + ψ(b)ρ, a).

In particular, Theorem 3.6 gives us(
d

dz

)k
log Λ(z, a)|z=0 =

=(−1)k−112(k − 1)!
∑
b∈B

(NaEk(ψ(b)ρ, L)− Ek(ψ(b)ρ, a−1L)).

Applying the result of Theorem 3.5.1, we obtain∑
b∈B

NaEk(ψ(b)ρ, L) = Naρ−kLK(f)(ψ
k
, k)

∑
b∈B

Ek(ψ(b)ρ, a
−1L) =

∑
b∈B

ψ(a)Ek(ψ(ab)ρ, L) = ψ(a)kρ−km LK(f)(ψ
k
, k)

where we have used the fact that a is coprime to 6pf and then ab defines a new set of represen-

tatives for the Galois group Gal(K(f)/K). Combining the two relations we get
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(
d

dz

)k
log Λ(z, a)|z=0 =

=(−1)k−112(k − 1)!
∑
b∈B

(Naψ(a))ρ−kLK(f)(ψ
k
, k).

Since ρ = Ω∞/f we conclude(
d

dz

)k
log Λ(z, a)|z=0 = 12(−1)k−1fkΩ−k

∞ (k − 1)!(Na− ψ(a)k)LK(f)(ψ
k
, k)(z − z0)k.

The proof of the Laurent of Λm is identical paying attention that the sum is taken overBm galois

representatives over Hm/Fm. See [Yag82] for details.

Corollary 3.7.1 (Damerell’s Theorem I). For every k ≥ 1,

Ω−k
∞ LK(f)(ψ

k
, k) ∈ K.

Proof. By Lemma 3.8 we have that Λ(z) has a series expansion with coefficients in K. Then the

first equation follows directly from the previous theorem.

Corollary 3.7.2 (Damerell’s Theorem II). For every k > j ≥ 0,(
2π√
dK

)j
Ω−(k+j)

∞ LK(f)(ψ
k+j

, k) ∈ K

Proof. Let ρ be an f-division point. By Corollary 3.5.1 we have the following relation between

Eisenstein numbers and L values∑
b∈B

Ej,k(ψ(b)ρ, L) = ρ−(j+k)Nm−j |Ω∞|2jLK(f)(ψ
j+k

, k). (3.10)

Furthermore, by Prop. 3.2.2 we have that exists a polynomial Pj,k in j + k indeterminates, of

degree j + 1, with rational coefficients such that

Ej,k(z, L) =
(A(L)/2)j

(k − 1)(k − 2) · · · (k − j)
Pj,k(E1(z, L), . . . , Ej+k(z, L)).

Combining the two relations we obtain that the left-hand side of equation (3.10) is given by

(A(L)/2)j times a linear combination with rational coefficient of Ek(ψ(b)ρ, L) for b ∈ B. Since

Ek(ψ(b)ρ, L) is algebraic over K we deduce that the right-hand side divided by (A(L)/2)j is

algebraic. Recall that the area of L is given by

A(L) = |Ω∞|2A(OK) =
|Ω∞|2

2πi

√
dK .

We then conclude that (
2π√
dK

)j
Ω−(k+j)

∞ LK(f)(ψ
k+j

, k)

is algebraic over K.
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Definition 3.13. Let I denote the set of integral ideals of K which are prime to 6pf, and let

S =

{
µ : I → Z |µ(a) = 0 for almost all a ∈ I and

∑
a∈I

(Na− 1)µ(a) = 0

}
.

If µ ∈ S, we set

Θ(z;µ) =
∏
a∈I

Θ(z, a)µ(a), Λm(z;µ) =
∏
a∈I

Λm(z, a)µ(a).

Lemma 3.3.2. Let µ ∈ S. Then for each integers n,m ≥ 0, we have∏
η∈p−nL/L

Λm(z + η;µ) = Λm(πnz;µ)

where the product is taken over a set {η} of representatives modulo L of the πn-division points of L.

Proof. Since πn is the generator of the ideal pn, it follows from Distribution relation Theorem

3.2 that ∏
η∈p−nL/L

Λm(z + η;µ) =
∏

η∈p−nL/L

∏
b∈Bm

Θ(z + η + ψ(b)ρm;µ) =

=
∏

b∈Bm

Θ(πnz + πnη + ψ(bpn)ρm;µ).

Observe that bpn defines a set of representatives Bm′ for the Galois group Gal(Hm/Fm). By

Lemma 3.3.1 we conclude ∏
η∈p−nL/L

Λm(z + η;µ) = Λm(πnz;µ).

Let Tπ denote the Tate module lim←− Êπn+1 , where the limit is taken relative to the usual projection

maps given by multiplication by powers of π. We fix a generator u = (un) as Op module of Tπ ,

i.e [π](un+1) = un. We can for example fix un to be ε(Ω∞/π
n) = −2℘(Ω∞/π

n)/℘′(Ω∞/π
n). Let

τn ∈ C such that un = ε(τn), where ε(z) is given by ε(z) = −2℘(z)/℘′(z) as discussed in Section

2.2.1. Since [πn+1]un = 0, we have that πn+1τn ∈ L. Since π is a unit in lim←−OK/p
n ∼= Zp we can

choose εn ∈ OK such that εnπ ≡ 1 mod pn+1 and obtaining

ε(εm+1
n τn) = [εm+1

n ]un = [π−(m+1)]un

We can then construct fpm+1pn+1-division points taking εm+1
n τn + ρm, indeed we have

[fπm+1πn+1]ε(εm+1
n τn + ρm) = [fπm+1πn+1][π−(m+1)]un[+][fπm+1πn+1]ε(ρm) = 0.

By construction, we have the following diagram.

εm
′+1

n′ τn′

εm+1
n′ τn′

εm
′+1

n τn

εm+1
n τn

πm′−m

πn′−n

πn′−n

πm′−m
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Definition 3.14. We call elliptic unitsC ′
n,m the subgroup of the units ofKn,m generated by Θ(εm+1

n τn+

ρm;µ) for all µ ∈ S.

Lemma 3.3.3. C ′
n,m is stable under the action of the Galois group Gal(Hn,m/K). In particular, C ′

n,m

is independent of the choice of the primitive fpn+1pm+-division point ρn,m of L.

Proof. Let b be an arbitrary integral ideal of K, prime to S and p, consider σb = (b, Hn,m/K)

the Artin symbol of b. Let β any generator of b. Thus by Theorem 3.1 we have

Θ(ρn,m;µ)σb = Θ(βρn,m;µ).

Since b is coprime with f, p and p we deduce the values of Θ at two different primitive fpn+1pm+-

division points belong to the same orbit under the action of Gal(Hn,m/K). By Corollary 3.4.1

we obtain

Θ(ρn,m;µ)σb =
∏
a∈I

(Θ(ρn,m, a)
σb)µ(a) =

∏
a∈I

(Θ(ρn,m, ab)Θ(ρn,m, b)
−Na)µ(a) =

= Θ(ρn,m, b)
−Na

∑
a∈I µa

∏
a∈I

Θ(ρn,m, ab)
µ(a).

Define µ′ : I → Z as follows

µ′(a) =


0 if b ∤ a

−Na
∑

a∈I µ(a) if a = b

µ(ab−1) if b | b, a ̸= b.

Then we observe∑
a∈I

(Na− 1)µ′(a) = −Na
∑
a∈I

µ(a) +
∑
ab∈I

(Nab− 1)µ(a) =
∑
a∈I

(Na− 1)µ(a) = 0

and so we conclude µ′ ∈ S . In particular, we deduce Θ(ρn,m;µ)σb = Θ(ρn,m;µ′) and then the

elliptic units are stable under the Galois action.

Lemma 3.3.4. Let m′ ≥ m ≥ 0 and n′ ≥ n ≥ 0. Then, for each µ ∈ S,

NHn′,m′/Hn,m
Θ(εm

′+1
n′ τn′ + ρm′ ;µ) = Θ(pn′−n,Hm/K)(εm+1

n τn + ρm;µ).

Proof. Let c be an integral ideal of K, prime to 6pf whose Artin symbol σc = (c, Hn′,m′/K) fixes

the subfield Hn,m. Let ρ a fpm+1pn+1-torsion point of L, then by Corollary B.3.1 we have

ξ(ρ) = ξ(ρ)σc = ξ(ψ(c)ρ).

We deduce ρ = ψ(c)ρ+ γ with γ ∈ L = Ω∞OK . Since ρ ∈ L/fπn+1πm+1 we obtain

ψ(c) ≡ 1 mod fpn+1pm+1.

Considering now the primitive fpn
′+1pm

′+1-division point εm
′+1

n′ τn′ + ρm′ , we can write

Θ(εm
′+1

n′ τn′ + ρm′ ;µ)σc = Θ(ψ(c)εm
′+1

n′ τn′ + ψ(c)ρm′ ;µ) =

= Θ(εm
′+1

n′ τn′ + ρm′ + δc;µ)
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with δc = (ψ(c)− 1)(εm
′+1

n′ τn′ + ρm′) We deduce δc is a pn
′−npm

′−m-division point of L. Hence,

every conjugate of Θ(εm
′+1

n′ τn′ + ρm′ ;µ) under Gal(Hn′,m′/Hn,m) is given by Θ(εm
′+1

n′ τn′ +

ρm′ + δ;µ) for some pn
′−npm

′−m-division point δ. There are exactly pn
′+m′−(n+m) such division

points, which is equal to the cardinality of Gal(Hn′,m′/Hn,m). We conclude

NHn′,m′/Hn,m
Θ(εm

′+1
n′ τn′ + ρm′ ;µ) =

∏
δ

Θ(εm
′+1

n′ τn′ + ρm′ + δ;µ)

where the product is taken over any set of representatives of pn
′−npm

′−mL modulo L. By the

Distribution relation Theorem 3.2 we deduce∏
δ

Θ(εm
′+1

n′ τn′ + ρm′ + δ;µ) = Θ(ψ(pn
′−npm

′−m)(εm
′+1

n′ τn′ + ρm′);µ).

In particular, since ψ(pn
′−npm

′−m) = πn
′−nπm

′−m we have

ψ(pn
′−npm

′−m)(εm
′+1

n′ τn′ + ρm′) = εm+1
n τn + πn

′−nρm.

In the previous lemma we proved Θ(z+ψ(p)n
′−nρm, a) = Θ(pn′−n,Hm,K)(z+ρm, a) that implies

Θ(εm+1
n τn + πn

′−nρm;µ) = Θ(pn′−n,Hm,K)(z + ρm;µ)

which we conclude

NHn′,m′/Hn,m
Θ(εm

′+1
n′ τn′ + ρm′ ;µ) = Θ(pn′−n,Hm/K)(εm+1

n τn + ρm;µ).

From Lemma 3.3.4 we deduce the following fundamental corollary.

Corollary 3.7.3. Let µ ∈ S and consider

en,m(µ) = Λφ
−n

m (z;µ)|z=εm+1
n τn

.

Then (en,m(µ)) ∈ U ′
∞.

Proof. First of all observe that by Theorem 3.3 we have Λm(εm+1
n τn;µ) is a unit in Kn,m and so

en,m(µ) can be regarded as belonging to U ′
n,m. We need to check the norm compatibility. Since

(p, Hm′/K) and φ coincide on Fm′ , by the previous lemma we have

NKn′,m′/Kn,m
Λφ

−n′

m′ (z;µ)|
z=εm

′+1

n′ τ ′
n
= Λ(pn′−n,Hm/K)φ−n′

m (z;µ)|z=εm+1
n τn

=

= Λφ
−n

m (z;µ)|z=εm+1
n τn

.

Thus, the en,m(µ) are compatible with respect to the norm map, and hence (en,m(µ)) ∈ U ′
∞.

We write e(µ) for (en,m(µ)) and C ′
∞ for the projective limit of C ′

n,m with respect to the norm

maps. We then deduce e(µ) ∈ C ′
∞ for all µ ∈ S.

Recall that by Lemma 3.3.1 we have Λm(z;µ) is a rational function of ℘(z) and ℘′(z). In partic-

ular, Λm(z;µ) has a power series expansion with coefficients in Fm and hence in Φm.
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Theorem 3.8. In terms of the parameter t = −2℘(z)/℘′(z) of Ê, Λm(z, a) has an expansion

Λm(z, a) =

∞∑
k=0

hk,m(a)tk

where hk,m(a) belong toRm, and h0,m(a) is a unit inRm.

Proof. First of all, observe that we have

Λm(0, a) =
∏

b∈Bm

Θ(ψ(b)ρm, a) =
∏

b∈Bm

Θ(ρm, a)
σb = NHm/K(Θ(ρm, a))

and then by Theorem 3.3 we deduce h0,m(a) = Λm(0, a) ∈ R×
m. In order to prove the Lemma

we can now show that Λm(z, a)−1 has a power series expansion in t with coefficients in Rm.

Take b ∈ Bm and put η = ψ(b)ρm. By definition we have

Θ(z + η, a)−1 =
∆(a−1L)

∆(L)Na

∏
v∈a−1L/L−{0}

(℘(z + η)− ℘(v))6

where v runs through a set of representatives of the non-zero cosets of a−1L modulo L. Let M

denote the finite extension of Hm which is obtained by adjoining to Hm all the ℘(v), and let P

be any prime of M lying above p. Let OP be the ring of integers of the completion of M at P,

then we claim that Θ(z + η)−1 can be expanded as a power series in t with coefficients in OP.

Since E has good reduction at p then ∆(L) is a unit at P. Furthermore, if α is a generator of a

then ∆(a−1L) = α12∆(L) implies ∆(a−1L) is integral at P. By the addition theorem we have

℘(z + η)− ℘(v) = 1

4

(
℘′(z)− ℘′(η)

℘(z)− ℘(η)

)2

− ℘(z)− ℘(η)− ℘(v).

By Lemma 2.2.2 we have ℘(η) and ℘(v), and consequently ℘′(η) and ℘′(v), lie in OP since their

orders are coprime with p. In particular recall that there exist two power series a, b ∈ 1+tOp[[t]]

such that x = t−2a(t), y = −2t−3a(t). Then substituting this expansion into the previous

expression we get

℘(z + η)− ℘(v) = 1

4

(
−2t−3a(t)− ℘′(η)

t−2a(t)− ℘(η)

)2

− t−2a(t)− ℘(η)− ℘(v)

and since a(t) = 1 + t2a′(t) the terms of negative exponents cancel out and we can conclude

℘(z + η)− ℘(v) = 1

4

(
−2− t2(t℘′(η) + a′(t))

t(1− t2(℘(η)− a′(t))

)2

− t−2a(t)− ℘(η)− ℘(v) =

= t−2(1 + t2a′′(t))(1 + t2a′′′(t))− t−2(1 + t2a′(t))− ℘(η)− ℘(v) =

= −℘(η)− ℘(v) + a′(t) + tc(t)

for a′(t), a′′(t), a′′′(t), c(t) ∈ OP[[t]]. Then Θ(z + η, a)−1 has a power series expansion with

coefficients in OP. The same is clearly true for Λm(z, a).

3.4 Table of values

In this final section, we provide some numerical values of the Eisenstein numbers in particular

cases. We are interested in studying the numerical properties of these values for the lattices

attached to elliptic curves with complex multiplication given by OK .
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L = Ω∞(Z+iZ) with Ω∞ ≈ 1.85407467730137191843385034720−1.85407467730137191843385034720i

Q(i) 0 ω1

2
ω1

3
ω1

4
ω1

5

E4
1
15

2
3

2+2
√
3

3
8
3 + 2

√
2 8

3 + 2
√
5 + 2

√
5 + 2

√
5

E6 0 − 2
5 i − 2i

√
144+86

√
3

15 − 2
5 i
√

498 + 352
√
2 2

5 i

√
2(1779 + 821

√
5 +

√
6527405 + 2917702

√
5)

E8 − 1
525 − 8

35 i − 164
105 −

4
√
3

5 − 512
35 −

52
√
2

5 − 4
35 (408 + 161

√
5 + 7

√
5945 + 2638

√
5)

E10 0 − 2
15

2
15 i
√
416 + 722√

3
2
15 i
√

131058 + 92672
√
2 2

15 i

√
2(2838999 + 1272121

√
5 +

√
16151310740405 + 7223071972862

√
5)

L = Ω∞(Z+
√
−2Z) with Ω∞ = −0.173822480149928796548653183122i

Q(
√
−2) 0 ω1

2
ω1

3
ω1

4

E4 −2450 −7350 14700(
√
6− 4) −29400(1 +

√
2)

E6 68600 −617400 617400(19− 10
√
6) −1234800(8 + 5

√
2)

E8 −2572500 −38587500 −30870000(49
√
6 + 136) −246960000(10 + 7

√
2)

E10
840350000

11 −2521050000 2521050000(451− 196
√
6) −20168400000(32+23

√
2)

L = Ω∞(Z+ 1+
√
−3

2 Z) with Ω∞ ≈ 2.10327315798818139176252861858−1.21432532394379080590997084489i

Q(
√
−3) 0 ω1

2
ω1

3
ω1

4

E4 0 −1 −2 3
√
2 −2(2 +

√
3)

E6
1
35

3
5

18
5

48
5 + 6

√
3

E8 0 − 3
7 − 24 3√4

7 − 192
7 −

108
√
3

7

E10 0 2
7

46 3√2
7

512
7 + 298

√
3

7

L = Ω∞(Z+ 1+
√
−7

2 Z) with Ω∞ ≈ 0.249589467962725575672578641846

Q(
√
−7) 0 ω1

2
ω1

3
ω1

4

E4 −525 525
2 −

1575
√
−7

2 −5250 + 1050
√
21− 3150

√
2(3−

√
21) −2100− 6300

√
−7

E6 −9450 −33075 + 23625
√
−7 −859950 + 141750

√
21 +

15750
√
14(−79

√
21− 333)

−1190700 + 661500
√
−7

E8 −118125 3898125
2 − 354375

√
−7

2 −96862500 + 26932500
√
21−

1417500
√
−42(61

√
21− 279)

263655000−
25515000

√
−7

E10 − 24806250
11 −62015625−

12403125
√
−7

−16644993750 + 3249618750
√
21−

8268750
√
−1581522

√
21− 7235766

−31107037500−
6003112500

√
−7

L = Ω∞(Z+ 1+
√
−11
2 Z) with Ω∞ ≈ 0.157988062436041406847226542091

Q(
√
−11) 0 ω1

2
ω1

3

E4 − 17248
5

∼199.1−4551.7i
(x3+51744x2+1082355740928=0) −4312 + 4312

√
−11

E6 − 664048
5

∼−62921+357641i
(125x3+1045875600x2+146118025025280x+135841135194781986816=0) − 1328096

5 + 2656192
√
−11

5

E8 − 127497216
25

∼9450795−12681946i
125x3+162558950400x2−3086012688533913600x+41255030382161114985725952=0

733108992
5 − 223120128

√
−11

5

E10
1041227264

5
∼−820896839+123463390i

125x3+26629387276800x2+43469163262330235781120x+18209282649496627270598642368512=0 − 123125123968
5 + 8069511296

√
−11

5

In the proof of Lemma 3.8 we have proven that the expansion of Θ(η + z, a) is p-integral for a

integral ideal prime to 6f and η a primitive m-torsion point. Recall that by Theorem 3.6,Θ(z, a)

has a Lauren expansion given by

logΘ(z + η, a) = 12
∑
k≥0

(−1)k(k − 1)!(NaEk(η, L)− Ek(η, a−1L))zk.

The following tables show the integrality of the coefficients.

L = Ω∞(Z+iZ) with Ω∞ ≈ 1.85407467730137191843385034720−1.85407467730137191843385034720i.
We consider a = 7OK and m = 2Ok with torsion point η = w1/2.
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Q(i) Ek(w1/2, L) Ek(w1/2, 7
−1L) (k − 1)!(49 · Ek(w1/2, L)− Ek(w1/2, 7

−1L))

E4
2
3

4802
3 -9408

E6 − 2
5 i − 235298

5 i 5644800i

E8 − 8
35 − 6588344

5 6640994304

E10
2
15 i

564950498
15 i −13667280076800i

L = Ω∞(Z+ 1+
√
−3

2 Z) with Ω∞ ≈ 2.10327315798818139176252861858−1.21432532394379080590997084489i.
We consider a = 7OK and m = 2Ok with torsion point η = w1/2.

Q(
√
−3) Ek(w1/2, L) Ek(w1/2, 7

−1L) (k − 1)!(49 · Ek(w1/2, L)− Ek(w1/2, 7
−1L))

E4 −1 −2401 14112

E6
3
5

352947
5 −8467200

E8 − 3
7 −2470629 12451859280

E10
2
7 80707214 -29287028736000

We consider a = 7OK and m = 3Ok with torsion point η = w1/3.

Q(
√
−3) Ek(w1/3, L) Ek(w1/3, 7

−1L) (k − 1)!(49 · Ek(w1/3, L)− Ek(w1/3, 7
−1L))

E4 −2 3
√
2 −4802 3

√
2 28224 3

√
2

E6
18
5

2117682
5 −50803200

E8 − 24 3√4
7 −19765032 3

√
4 99614914560 3

√
4

E10
46 3√2

7 1856265922 3
√
2 −67360144320000 3

√
2

L = Ω∞(Z+ 1+
√
−7

2 Z) with Ω∞ ≈ 0.249589467962725575672578641846. We consider a = 11OK
and m = 2Ok with torsion point η = w1/2.

Q(
√
−7) Ek(w1/2, L) Ek(w1/2, 11

−1L) (k − 1)!(121 · Ek(w1/2, L)− Ek(w1/2, 11
−1L))

E4
525
2 −

1575
√
−7

2
7686525

2 + 23059575
√
−7

2 −22869000− 68607000
√
−7

E6 −33075 + 23625
√
−7 −58594380075− 41853128625

√
−7 7030845360000 + 5022032400000

√
−7

E8
3898125

2 − 354375
√
−7

2
835597712998125

2 + 75963428454375
√
−7

2 −2105705048139000000− 191427731649000000
√
−7

E10 −62015625− 12403125
√
−7 −1608525597521390625 +

321705119504278125
√
−7

583701766105550400000000 +

116740353221110080000000
√
−7

By Corollary 3.6.1 we know that the Eisenstein numbers at m-torsion point are algebraic. Since

they live in the field K(Em), the degree of the extension becomes quickly extremely higher.

In particular, using a Computer Algebra System like GP/Pari, naive methods to detect the

algebraicity of these values fail even for 5 torsion points. In order to avoid this problem, we can

use the property of the action of the Galois action and detect the algebraicity through the use of

symmetric polynomials. Recall in particular that by Corollary 3.6.1 we have

Ek(ρ, L)
σb = Ek(ψ(b)ρ, L)

for b coprime with m. In particular, the Galois elements fix the Newton sums

pr(Ek) =
∑

ρ∈m−1L/L
ρ primitive

Ek(ρ, L)
r.

The following tables show the rationality of these values for some examples. The code to com-

pute the Newton sums can be found in Appendix C

L = Ω∞(Z+iZ) with Ω∞ ≈ 1.85407467730137191843385034720−1.85407467730137191843385034720i.
We consider m = 6Ok.
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Q(i) p1 p2 p3 p4

E4
259
3

28937
9

2209807
27

185649185
81

E6 0 − 2029832
25 0 5737870519264

3375

E8 − 47989
15

510611417
225 − 281097320777293

165375
887319825715670783

694575

E10 0 13931542792
225 0 29170111094091269344

30375

L = Ω∞(Z+
√
−2Z) with Ω∞ ≈ −0.173822480149928796548653183122i. We consider m = 6Ok.

Q(
√
−2) p1 p2 p3 p4

E4 −3172750 4342358562500 −5859740610595375000 8224911586379185906250000

E6 3200533000 5821228519274000000 9662470329903512206120000000 16381256601707174904959423324000000000

E8 −4320809587500 8153357340912439556250000 −16376688311616507014921415796875000000 32998281437217320249737406291129961914062500000000

E10 4619340923750000 11544491321704145743925000000000 27693386494431987136003527529076375000000000000 66503257343553833324818555454052105069725159375000000000000000

L = Ω∞(Z+ 1+
√
−3

2 Z) with Ω∞ ≈ 2.10327315798818139176252861858−1.21432532394379080590997084489i.
We consider m = 6OK

Q(
√
−3) p1 p2 p3 p4

E4 0 0 311811 0

E6 1333 310739 1763551453
25

2005171249303
125

E8 0 0 − 5499412144209
343 0

E10 0 0 1250350064581656
343 0

L = Ω∞(Z+ 1+
√
−7

2 Z) with Ω∞ ≈ 0.249589467962725575672578641846. We consider m = 6OK

Q(
√
−7) p1 p2 p3 p4

E4 679875 199394015625 −74081487057046875 25260535322103744140625

E6 −440889750 73646077235062500 −14326041813121575219375000 2774642842350556481530742906250000

E8 −198404521875 25050210647264553515625 −2773821301552597238516678466796875 309486424326149930424886655342942047119140625

E10 −136358095781250 8318160331569824535351562500 −535530325464858064727860992907470703125000 34516736517162211582565451163798220306959533691406250000
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CHAPTER 4

Coleman Theory

4.1 Coleman power series

In the first chapter, we have studied the properties of the tower field K∞ and F∞ generated

from K adding the p and p-torsion point of the elliptic curve associated to K in complete anal-

ogy with the cyclotomic tower Q(µp∞). The theta function has given us a way to construct a

sequence of norm-coherent units in the elliptic tower field. We will now study the construction

of the canonical interpolation series for norm-compatible systems of elements in these towers.

In 1977, Coates and Wiles [CW77] constructed ad hoc a particular series for the quadratic imag-

inary case and elliptic units. A few years later, Coleman [Col79] found a conceptual proof that

is valid for arbitrary Lubin-Tate groups. An extensive treatment of the cyclotomic case can be

found in [CS06].

4.1.1 General results

Let K be a fixed local field, and let OK be the ring of integers of K. Fix a uniformizer π of OK
and let F be a Lubin-Tate formal group with endomorphism ring OK . For b ∈ OK we write [b]

for the endomorphism of F given by b, and Λn for the kernel of the endomorphism [πn+1]. Now

take H to be a complete, unramified extension of K and let φ be the Frobenius automorphism

of H/K. We define the tower of fields

Hn = H(Λn).

When m ≥ n we write Nm,n for the norm map from Hm to Hn. Fix a generator v = (vn)

of the Tate module lim←−Λn as an OK − module, i.e., vn generates Λn as an OK module and

[π](vn+1) = vn for each n ≥ 0. Let OH be the ring of integers of H . For brevity, we will write

On the ring of integers of Hn and with pn its maximal ideal.

Theorem 4.1. Let α = (αn) be an element of lim←−H
×
n where the limit is taken with respect to the norm

maps. Then there exists a unique power series cα(T ) in OH((T )) satisfying

cφ
−n

α (vn) = αn
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for all n ≥ 0.

Proof. See [Col79].

Corollary 4.1.1. Let α, α′ be elements of lim←−H
×
n . Then the following properties hold

(i) cαα′ = cαcα′ ,

(ii) cφα([π](T )) =
∏
λ∈Λ0

cα(T [+]λ),

(iii) cα(0)1−φ
−1

= NH0,H(α0),

(iv) if σ ∈ Gal(H∞/H) and k(σ) ∈ O×
K defined in Theorem 2.3 then we have

cσ(α) = cα ◦ [k(σ)]f .

Proof. (i) Observe that for every n ≥ 0 we have

(cαcα′)φ
−n

(vn) = cφ
−n

α (vn)c
φ−n

α′ (vn) = αnα
′
n.

By uniqueness of the Coleman power series stated in the previous theorem we have cαα′ =

cαcα′ .

(ii) Observe that for every n ≥ 1 we have

αn−1 = Nn,n−1αn =
∏

τ∈Gal(Hn/Hn−1)

cα(vn)
τ =

∏
τ∈Gal(Hn/Hn−1)

cα(v
τ
n).

Since Gal(Hi/Hi−1) acts transitively on the elements of Λi − Λi−1, we deduce that the

right-hand side of the previous equation coincides with∏
λ∈Λ0

cα(vn[+]λ).

Let g(T ) = cφα([π](T )), then we have for every n ≥ 0

gφ
−n

(vn) = cφ
−n+1

α ([π](vn)) = cφ
−n+1

α (vn−1) = αn−1.

By the uniqueness of the Coleman power series stated in the previous theorem we have

cφα([π](T )) =
∏
λ∈Λi

cα(T [+]λ).

(iii) Evaluating the equality (ii) in 0 we obtain

cφα(0) =
∏
λ∈Λ0

cα(λ) = cα(0) ·NH0/H(cα(v0)) = cα(0) ·NH0/H(α0).

(iv) Recall from Theorem 2.3 we have that for τ ∈ Gal(H∞/H) there exists k(τ) ∈ O×
K such

that λτ = [k(τ)]λ for every λ ∈ Λ. In particular, from the definition of the Coleman power

series we have for every n ≥ 0

τ(αn) = τ(cα(vn)) = cα(v
τ
n) = cα([k(τ)]vn).

By uniqueness we conclude cτ(α) = cα ◦ [k(τ)].
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Observe that by uniqueness we have that the Coleman power series associated with 1 ∈ U∞ is

c1(T ) = 1. In particular, by the previous corollary, point (ii), we deduce

1 = c1 = cαcα−1

and then cα is a unit in OH [[T ]].

4.1.2 Norm coherent units in U∞

In Section 2.2 we have studied the structure of the extensions of K with elliptic torsion points,

recall that we have

Fm = K(Eπm+1), Kn,m = Fm(Eπn)

and we have fixed the completions Ξn,m,ω of Kn,m and Φm,ω of Fm at the prime ω above p. We

denotedRm,ω the ring of integers of Φm,ω .

Ξn,m,ω

Kn,m Φm,ω

Fm

We have denoted by U ′
n,m,ω the units of Ξn,m,ω and U ′

n,m =
∏
ω U

′
n,m,ω where the product is

taken over the set of primes ω of Fm lying above p. The multiplicative groups of units are given

by

U ′
∞ = lim←−U

′
n,m, U∞ = lim←−Un,m

where the projective limit is taken with respect to the norm maps on the Ξn,m. As before we

denote by ϕ the Frobenius automorphism of the unramified extension Fm/K. Let Tπ denote the

Tate module lim←− Êπn+1 , where the limit is taken relative to the usual projection maps given by

multiplication by powers of π. We fix a generator u = (un) as Op module of Tπ , i.e [π](un+1) =

un. We can for example fix un to be ε(Ω∞/π
n) = −2℘(Ω∞/π

n)/℘′(Ω∞/π
n).

By the final remark in Section 2.2.1, the elliptic curve law defines a Lubin-Tate formal group

over K, then we can rewrite the previous results as follows.

Theorem 4.2. Let β = (βn,m,ω) be an element of U ′
∞. Then for each integer m ≥ 0 and each prime ω

of Fm lying above p, there exists a unique power series cm,ω,β(T ) ∈ Rm,ω[[T ]] satisfying

cφ
−n

m,ω,β(un) = βn,m,ω

for all n ≥ 0. Furthermore, we have the following properties

i) cm,ω,ββ′ = cm,ω,βcm,ω,β′ , for every β, β′ ∈ U ′
∞,

ii) cφm,ω,β([π](T )) =
∏
η∈Êπ

cm,ω,β(T [+]η)

iii) cm,ω,β(0)1−φ
−1

= NK1,m,Fm
(β1,m).
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We will denote cm,β = (cm,ω,β)ω ∈
∏
ωRm,ω[[T ]] = Rm[[T ]] the collection of power series for

each prime ω of Fm lying above p.

The previous theorem gives us the existence of the power series cm for the tower field above

Fm. The following result shows the norm relation between the cm’s.

Lemma 4.1.1. For m′ ≥ m and ω′ a prime of Fm′ lying above the prime ω of Fm, let Nm′,m denote the

norm map fromRm′ [[T ]] toRm[[T ]]. Then we have the following identity

cm,β(T ) = Nm′,m(cm′,β(T )).

Proof. First of all, denoting Nn
m′,m the norm map from Ξn,m′,ω′ to Ξn,m,ω , the structure of U ′

∞

implies the identity ∏
ω′|ω

Nn
m′,m(βn,m′,ω′) = βn,m,ω

for every n ≥ 0. In particular, we can write∏
ω′|ω

Nn
m′,m(cφ

−n

m′,ω′,β(vn)) = βn,m,ω.

Since vn ∈ Ξn,m,ω and cm′,ω′,β has coefficients in Rm′,ω′ we deduce that the norm map acts as

follows ∏
ω′|ω

 ∏
σ∈Gal(Φm′,ω′/Φm,ω)

cσm′,ω′,β

φ−n

(vn) = βn,m,ω.

From the uniqueness of the Coleman power series, we conclude

cm,β(T ) = Nm′,m(cm′,β(T )).

Recall that the logarithm map λ(T ) associated with Ê formal group has the property that λ′(T )

is a unit in the ring Zp[[T ]]. Furthermore, from the remark of Corollary 4.1.1, cm,ω,β(T ) is a unit

in Rm,ω[[T ]]. The following definition introduces the logarithmic derivative of the Coleman

power series

Definition 4.1. We denote by gm,β(T ) the element ofRm[[T ]] whose ω-component (gm,β(T ))ω is given

by

gm,ω,β(T ) = λ′(T )−1 d

dT
log cm,ω,β(T )

and it is the logarithmic derivative of the Coleman power series.

Observe that if β = (βn,m,ω) ∈ U ′
∞, then we can canonically write using the Teichmuller char-

acter

βn,m,ω = ωn,m,ω(β)⟨βn,m,ω⟩

where ⟨βn,m,ω⟩ belongs to Un,m,ω and ωn,m,ω(β) is a root of unity in Ξn,m,ω . By the multiplica-

tivity of the Teichmuller character, we have ⟨β⟩ = (⟨βn,m,ω⟩) ∈ U∞.
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Lemma 4.1.2. For every β = (βn,m,ω) ∈ U ′
∞ we have

gm,β(T ) = gm,⟨β⟩(T ).

Proof. By Proposition 2.2.3, we have that Ξn,m,ω is totally ramified over Φm,ω . In particular we

have ωn,m,ω(β) ∈ Φm,ω . The Coleman power series for each pair m and ω is then given by the

constant series ω0,m,ω(β) ∈ Rm,ω[[T ]]. By Corollary 4.1.1 we can write

cm,ω,β(T ) = ω0,m,ω(β) · cm,ω,⟨β⟩(T ).

Since ω0,m,ω is a root of unity, we have

log cm,ω,β(T ) = log cm,ω,⟨β⟩(T )

and then applying the definition of gm,β we obtain the identity.

Lemma 4.1.3. Let m′ ≥ m ≥ 0 and let Trm′,m denote the trace map from Rm′ [[T ]] to Rm[[T ]]. Then

for each β ∈ U ′
∞ we have

gm,β(T ) = Trm′,m(gm′,β(T ))

and gm,β satisfies the functional equation

πgφm,β([π]T ) =
∑
η∈Êπ

gm,β(T [+]η).

Proof. Recall that from Lemma 4.1.1 we have

cm,ω,β(T ) =
∏
ω′|ω

∏
σ∈Gal(Φm′,ω′/Φm,ω)

cσm′,ω′,β(T ).

Applying the logarithm map and observing that the Galois action commutes with it we deduce

log cm,ω,β(T ) =
∑
ω′|ω

∑
σ∈Gal(Φm′,ω′/Φm,ω)

(log cm′,ω′,β)
σ(T ).

The identity follows from the definition of gm,ω .

We have λ(T [+]η) = λ(T ) + λ(η) = λ(T ) and hence d/dTλ(T [+]η) = λ′(T ) for all η ∈ Êπ . Thus

gm,ω,β(T [+]η) =

(
d

dT
λ(T [+]η)

)−1

· d
dT

log cm,ω,β(T [+]η) =

= λ′(T )−1 d

dT
log cm,ω,β(T [+]η)

From Theorem 4.2 we have

(cφm,ω,β ◦ [π])(T ) =
∏
η∈Êπ

cm,ω,β(T [+]η)

and then from the previous equality∑
η∈Êπ

gm,ω,β(T [+]η) = λ′(T )−1
∑
η∈Êπ

d

dT
log cm,ω,β(T [+]η) =

= λ′(T )−1 d

dT
log(cφm,ω,β ◦ [π]).
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On the other hand, since λ([π]T ) = πλ(T ) we deduce

(gφm,ω,β ◦ [π]) =
(
d

dT
λ([π]T )

)−1

· d
dT

log(cφm,ω,β ◦ [π]) =

= π−1λ′(T )−1 d

dT
log(cφm,ω,β ◦ [π]).

Combining the two equations we conclude

πgφm,β([π]T ) =
∑
η∈Êπ

gm,β(T [+]η).

In the following lemma, we see how the Galois action on the system of units acts on the Cole-

man power series and its logarithmic derivative by formal multiplication.

Lemma 4.1.4. Let β ∈ U ′
∞ and m ≥ 0, then for every σ ∈ G∞ and n ≥ 0 we have

cm,βσ = cσm,β([k1(σ)](T )),

gm,βσ = k1(σ)g
σ
m,β([k1(σ)](T )).

Proof. First of all recall that by Theorem 2.6 and Theorem 2.3 we have

uσn = [k1(σ)](un).

Then consider the power series d(T ) = cσm,β,ω([k1(σ)](T )) ∈ Rm[[T ]] and we have

dφ
−n

(un) = cφ
−nσ
m,β,ω([k1(σ)](un)) = (cφ

−n

m,β,ω(un))
σ = βσ.

By uniqueness of the Coleman power series we conclude cm,βσ,ωσ = dm. By definition of gm,β
we have

gm,βσ,ωσ (T ) = λ′(T )−1 d

dT

(
log cσm,β,ω([k1(σ)](T ))

)
while

gσm,β,ω([k1(σ)](T )) = λ′([k1(σ)](T ))
d

dT

(
log cσm,β,ω([k1(σ)](T ))

)
=

= k1(σ)
−1λ′(T )−1 d

dT

(
log cσm,β,ω([k1(σ)](T ))

)
.

Combining the two equations we conclude gm,βσ = k1(σ)g
σ
m,β([k1(σ)](T )).

Recall that we wrote Rm =
∏
ωRm,ω and write lim←−Rm for the projective limit of the rings Rm

relative to the trace maps. We also put R∞ =
⋃
m≥0Rm and denote the completion of R∞ by

R̂∞.

Theorem 4.3. Let b ∈ lim←−Rm. Then there is a unique power series hb(T ) ∈ R̂∞[[T ]] such that

hb(T ) ≡
∑

σ∈Gal(Fm/K)

(bσ)m,pm
(1 + T )k2(σ) mod ((1 + T )p

m+1

− 1) (4.1)

for all m ≥ 0. Where (bσ)m,pm denotes the pm-component of the projection onto Rm of the image of b

under the action of any element of G∞ whose restriction to Fm is σ.
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Proof. First of all observe that by Lemma 2.2.6 we have that if θ ∈ Gal(K∞/K) is trivial on Fm,

then k2(θ) ≡ 1 mod pm+1, and hence (1 + T )k2(σ) is well defined modulo ((1 + T )p
m+1 − 1) for

all σ ∈ Gal(Fm/K). Let m′ ≥ m, then by the trace compatibility of an element of lim←−Rm we

have

(bσ)m,pm
=

∑
θ∈Gal(Fm′/K)

θ|Fm=σ

(bθ)m′,pm′ .

Consequently we deduce∑
θ∈Gal(Fm′/K)

θ|Fm=σ

(bθ)m′,pm′ (1 + T )k2(θ) ≡ (bσ)m,pm
(1 + T )k2(σ) mod ((1 + T )p

m+1

− 1).

Calling hm,b(T ) the right hand side of (4.1), by completeness of R̂∞ we conclude the sequence

hm,b(T ) converges in R̂∞[[T ]].

Definition 4.2. Let b ∈ lim←−Rm and j ≤ 0, we define

δj(b) =

[(
(1 + T )

d

dT

)−j

hb(T )

]
|T=0

∈ R̂∞.

Lemma 4.1.5. Let b ∈ lim←−Rm and j ≤ 0, then we have

δj(b) ≡
∑

σ∈Gal(Fm/K)

k2(σ)
−j(bσ)m,pm

mod pm+1
∞

where p∞ is the maximal ideal of R̂∞.

Proof. By (4.1) we have that for every m ≥ 0 there exists f(T ) ∈ R̂∞[[T ]] such that

hb(T ) =
∑

σ∈Gal(Fm/K)

(bσ)m,pm(1 + T )k2(σ) + f(T ) · ((1 + T )p
m+1

− 1).

To prove the congruence we proceed by induction on −j. Applying the derivation (1+T )d/dT

we obtain(
(1 + T )

d

dT

)
hb(T ) =

∑
σ∈Gal(Fm/K)

(bσ)m,pmk2(σ)(1 + T )k2(σ)+

+ (1 + T )f ′(T )((1 + T )p
m+1

− 1) + pm+1f(T )(1 + T )p
m+1

.

Suppose now that for j ≤ 0 we have(
(1 + T )

d

dT

)−j+1

hb(T ) =
∑

σ∈Gal(Fm/K)

(bσ)m,pmk2(σ)
−j+1(1 + T )k2(σ)+

+ g1(T )((1 + T )p
m+1

− 1) + pm+1g2(T )

with g1(T ), g2(T ) ∈ R̂∞[[T ]]. Applying the derivation (1 + T )d/dT we obtain(
(1 + T )

d

dT

)−j

hb(T ) =
∑

σ∈Gal(Fm/K)

(bσ)m,pm
k2(σ)

−j(1 + T )k2(σ)+

+ (1 + T )g′1(T )((1 + T )p
m+1

− 1)+

+ pm+1g1(T )(1 + T )p
m+1

+ pm+1g′2(T )
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We conclude that for every j ≤ 0 we have(
(1 + T )

d

dT

)−j

hb(T ) ≡
∑

σ∈Gal(Fm/K)

(bσ)m,pmk2(σ)
−j(1 + T )k2(σ) mod pm+1

∞ .

4.1.3 Power series gβ(T1, T2)

In the previous section, we have studied the construction of the power series for norm-coherent

system of units. We will see how these series allow us to construct p-adic measures to inter-

polate some L-values. In the work of Iwasawa [Iwa69] for the cyclotomic case and Coates

and Wiles [CW77] for the quadratic imaginary, they constructed the theory for one variable L-

function. Yager [Yag82] discovered that in the case of K quadratic imaginary, it is possible to

construct a richer measure with a two variable dependence. To do this we need to enlarge the

Coleman power series to a two variable type that will contain the information of the collection

(gm)m.

Theorem 4.4. For each β ∈ U ′
∞ there is a unique power series gβ(T1, T2) ∈ R̂∞[[T1, T2]] such that

gβ(T1, T2) ≡
∑

σ∈Gal(Fm/K)

(gσm,β(T1))pm(1 + T2)
k2(σ) mod ((1 + T2)

pm+1

− 1)

for all m ≥ 0. Moreover, gβ satisfies the functional equation

πgβ([π]T1, (1 + T2)
k2(φ)

−1

− 1) =
∑
η∈Êπ

gβ(T1[+]η, T2)

and for every σ ∈ G∞

gβσ (T1, T2) = k1(σ)gβ([k1(σ)](T1), (1 + T2)
k2(σ)

−1

− 1).

Proof. Recall that by Lemma 4.1.3, for m′ ≥ m we have gm,β = Trm′,m(gm′,β). From the

proof of Theorem 4.3 we deduce the existence and uniqueness of the power series gβ(T1, T2) ∈
R̂∞[[T1, T2]].In particular for m ≥ 0 there exists f ∈ R̂∞[[T1, T2]] such that

gβ(T1, T2) =
∑

σ∈Gal(Fm/K)

(gσm,β(T1))pm
(1 + T2)

k2(σ) + f(T1, T2)((1 + T2)
pm+1

− 1)

and then we have

gβ([π]T1, (1 + T2)
k2(φ)

−1

− 1) =
∑

σ∈Gal(Fm/K)

(gσm,β([π]T1))pm
((1 + T2)

k2(φ
−1σ)+

+ f1(T1, T2)((1 + T2)
k2(φ)

−1pm+1

− 1)

where f1(T1, T2) = f([π]T1, (1 + T2)
k2(φ)

−1 − 1). In particular, we have

gβ([π]T1, (1 + T2)
k2(φ)

−1

− 1) ≡
∑

σ∈Gal(Fm/K)

(gσφm,β([π]T1))pm((1 + T2)
k2(σ)
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modulo ((1 + T )p
m+1 − 1). Now, Lemma 4.1.3 shows that for all σ ∈ Gal(Fm/K),

π(gσφm,β([π]T1))pm =
∑
η∈Êπ

(gσm,β(T1[+]η))pm
,

and so

gβ([π]T1, (1 + T2)
k2(φ)

−1

− 1) ≡
∑

σ∈Gal(Fm/K)

∑
η∈Êπ

(gσm,β(T1[+]η))pm
((1 + T2)

k2(σ)

modulo ((1 + T )p
m+1 − 1). Observe that for η ∈ Êπ we have

gβ(T1[+]η, T2) ≡
∑

σ∈Gal(Fm/K)

(gσm,β(T1[+]η))pm((1 + T2)
k2(σ)

modulo ((1 + T )p
m+1 − 1). The two equivalences give us the equation

πgβ([π]T1, (1 + T2)
k2(φ)

−1

− 1) =
∑
η∈Êπ

gβ(T1[+]η, T2).

For the second equality, recalling Lemma 4.1.4, we observe

gβσ (T1, T2) ≡
∑

θ∈Gal(Fm/K)

(gθm,βσ (T1))pm(1 + T2)
k2(θ) ≡

≡
∑

θ∈Gal(Fm/K)

(k1(σ)g
σθ
m,β([k1(σ)](T1))pm

(1 + T2)
k2(θ) ≡

≡ k1(σ)
∑

θ∈Gal(Fm/K)

(gθm,βσ (T1))pm
(1 + T2)

k2(σ
−1θ)

modulo ((1+T2)
pm+1−1). Comparing the previous equation with the definition of gσβ ([k1(σ)](T1), (1+

T2)
k1(σ

−1) − 1) we prove the equality

gβσ (T1, T2) = k1(σ)gβ([k1(σ)](T1), (1 + T2)
k2(σ)

−1

− 1).

Definition 4.3. Let k ≥ 1 and j ≤ 0. We define for each β ∈ U∞,

δk,j(β) =

[(
λ′(T )−1 ∂

∂T1

)k−1(
(1 + T2))

∂

∂T2

)−j

gβ(T1, T2)

]
|(T1,T2)=(0,0)

.

Lemma 4.1.6. Let k ≥ 1 and j ≤ 0. Then δk,j is a homomorphism of Zp-modules from U∞ to R̂∞ for

all β ∈ U∞ and all σ ∈ G∞,

δk,j(β
σ) = k1(σ)

kk2(σ)
jδk,j(β). (4.2)

Let U (i1,i2)
∞ the Zp[∆]-submodule of U∞ where ∆ acts via χi11 χ

i2
2 . If β ∈ U

(i1,i2)
∞ , then δk,j(β) = 0

unless (k, j) ≡ (i1, i2) mod (p− 1), and if h(T1, T2) ∈ Λ,

δk,j(h(T1, T2)β) = h(uk − 1, uj − 1)δk,j(β) (4.3)

where u is the topological generator of 1 + pZp.
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Proof. First of all, by Theorem 4.2, for every β1, β2 ∈ U∞ we have that cm,β1β2
(T ) = cm,β1

(T ) ·
cm,β2(T ). In particular, from the definition of gm,β we get

gm,β1β2(T ) = gm,β1(T ) + gm,β2(T )

and consequently

gβ1β2(T1, T2) = gβ1(T1, T2) + gβ2(T1, T2).

By linearity of the derivation operator, we conclude δk,j is a homomorphism. In order to prove

equation (4.2) we use Theorem 4.4

δk,j(β
σ) =

[(
λ′(T )−1 ∂

∂T1

)k−1(
(1 + T2))

∂

∂T2

)−j

gβσ (T1, T2)

]
|(T1,T2)=(0,0)

=

=

[(
λ′(T )−1 ∂

∂T1

)k−1(
(1 + T2))

∂

∂T2

)−j

k1(σ)gβ([k1(σ)](T1), (1 + T2)
k2(σ)

−1

− 1)

]
|(T1,T2)=(0,0)

=

=

[
k1(σ)

k

(
λ′(T )−1 ∂

∂T1

)k−1(
(1 + T2))

∂

∂T2

)−j

gβ(T1, (1 + T2)
k2(σ)

−1

− 1)

]
|([k1(σ)](T1),T2)

=

=

[
k1(σ)

kk2(σ)
j

(
λ′(T )−1 ∂

∂T1

)k−1(
(1 + T2))

∂

∂T2

)−j

gβ(T1, T2)

]
|([k1(σ)](T1),(1+T2)k2(σ)−1−1)

=

from which observing that ([k1(σ)](0), (1 + 0)k2(σ)
−1 − 1) = (0, 0) we conclude

δk,j(β
σ) = k1(σ)

kk2(σ)
jδk,j(β). (4.4)

Let β ∈ U
(i1,i2)
∞ , then for every σ ∈ ∆ we have βσ = χ1(σ)

i1χ2(σ)
i2β. From the previous

equality, we then get

χ1(σ)
i1χ2(σ)

i2δk,j(β) = δk,j(β
σ) = k1(σ)k2(σ)

jδk,j(β)

where in Section 2.2.3 we defined χ1 = k1|∆, χ2 = k2|∆ and then δk,j(β) = 0 unless (k, j) ≡
(i1, i2) mod (p − 1). To conclude, recall that we have γ1, γ2 ∈ Γ such that (k1, k2)(γ1) = (u, 1)

and (k1, k2)(γ2) = (1, u) with u topological generator of (1+pZp)× and ∆ acts as (1+Ti)β = γiβ

for i = 1, 2 and β ∈ U∞. Then we have

δk,j((1 + T1)
nβ) = δk,j(β

γn
i ) = k1(γ

n
1 )
kk2(γ

n
1 )
jδk,j(β) = ukjδ(k, j)(β)

and analogous for (1 + T2). By linearity and continuity, we conclude

δk,j(h(T1, T2)β) = h(uk − 1, uj − 1)δk,j(β).

To conclude this section, the following lemma establishes the connection between the differen-

tial operators δj of definition 4.2 and δk,j of definition 4.3. In particular, it relates the differentials

of the 1 variable power series and the two variable one.
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Lemma 4.1.7. Let β ∈ U∞ and consider

dk(β) =
[(
λ′(T )−1d/dT

)k−1
gm,β(T )

]
|T=0

∈ Rm.

It satisfies the equation

δk,j(β) = δj(dk(β))

and the congruence

δk,j(β) ≡
∑

σ∈Gal(Fm/K)

k2(σ)
−j(dk(β)

σ)m,pm
mod pm+1

∞ .

Proof. From the definition of the power series hb(T ) we have

hdk(β) ≡
∑

σ∈Gal(Fm/K)

(dk(β)
σ)m,pm

(1 + T2)
k2(σ) ≡

≡
∑

σ∈Gal(Fm/K)

[(
λ′(T1)

−1d/dT1
)k−1

gσm,β,pm

]
|T1=0

(1 + T2)
k2(σ)

modulo ((1 + T2)
pm+1 − 1). From the previous congruence and the definition of δj we observe

δk,j(β) = δj(dk(β)). By Lemma 4.1.5 we conclude

δk,j(β) = δj(dk(β)) ≡
∑

σ∈Gal(Fm/K)

k2(σ)
−j(dk(β)

σ)m,pm mod pm+1
∞ .

4.2 Coleman power series for elliptic units

In Section 3.3 we have defined the elliptic units as special values of the theta function. In

particular C ′
n,m is the subgroup of the units of Kn,m generated by Θ(εm+1

n τn + ρm;µ) for all

µ ∈ S. In Corollary 3.7.3 we have defined a collection of norm-coherent elliptic units

en,m(µ) = Λφ
−n

m (z;µ)|z=εm+1
n τn

with (en,m(µ)) ∈ U ′
∞. Let Pm(z) ∈ Fm[[z]] be the Laurent expansion of Λm(π−(m+1)z;µ). By

abuse of notation we will denote

Λm(π−(m+1)λ(T );µ) = Pm(λ(T ))

where λ is the usual formal logarithm map. We can then finally apply the Coleman theory

developed before to the system of elliptic units.

Theorem 4.5. Let µ ∈ S. Then the Coleman power series cm,e(µ)(T ) ∈ Rm[[T ]] attached to e(µ) is

given by

cm,e(µ)(T ) = Λm(π−(m+1)λ(T );µ) (4.5)

where λ(T ) is the formal logarithm of Ê.
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Proof. First of all, recall that by construction we have

[π−(m+1)]un = ε(εm+1
n τn)

then it follows

Λφ
−n

m (π−(m+1)λ(un);µ) = Λφ
−n

m (z;µ)|z=εm+1
n τn

= en,m(µ)

since λ is the inverse of the formal exponential map ε. By the uniqueness of the Coleman power

series, we conclude the proof.

By the definition of the logarithmic derivative of the Coleman power series 4.1 we then have

gm,e(µ)(T ) = λ′(T )−1 d

dT
log Λm(π−(m+1)λ(T );µ).

Furthermore, the two variable function ge(µ)(T1, T2) is then given by

ge(µ)(T1, T2) ≡
∑

σ∈Gal(Fm/K)

(gσm,e(µ)(T1))pm
(1 + T2)

k2(σ) mod ((1 + T2)
pm+1

− 1)

for all m ≥ 0.

Recall that if b ∈ lim←−Rm and j ≤ 0 we have defined the two differential operators

δj(b) =

(
(1 + T )

d

dT

)−j

hb(T )|T=0 ∈ R̂∞,

δk,j(e(µ)) =

[(
λ′(T )−1 ∂

∂T1

)k−1(
(1 + T2))

∂

∂T2

)−j

ge(µ)(T1, T2)

]
|(T1,T2)=(0,0)

.

Prop. 4.2.1. There exists an isomorphism of formal groups defined over R̂∞,

η : Ê → Ĝm

S 7→ η(S) = ΩpS + · · · ∈ R̂∞[[S]]

satisfying

1 + η

(
ε

(
Ω∞

πn+1

))
=

(
Ω∞

πn+1
, ε−n+1
n

Ω∞

πn+1

)
n

(4.6)

where (, )n denotes the Weil pairing of the pn+1-division points of L. In particular, Ωp is a unit in R̂∞

and uniquely determined by the choice of the embedding of the fields Kn,m in Ξn,m.

Proof. First of all, since Ê is a formal group of height 1, Lubin [Lub64] proved that there exists an

isomorphism between Ê and Ĝm. In particular, Tate [Tat67] has shown that we have a natural

isomorphism between the isomorphism group of p-divisible groups and their Tate-modules

Hom(Ê, Ĝm)
∼−→ Hom(lim←−E[πn+1], lim←−µpn+1).

The Weil pairing shows thatHom(lim←−E[πn+1], lim←−µpn+1) is naturally isomorphic to lim←−E[πn+1].

Recall that we fixed εn ∈ OK such that εnπ ≡ 1 mod pn+1. Then we consider the isomorphism

η : Ê → Ĝm associated to (ε−n+1
n Ω∞/π

n+1) obtaining

1 + η

(
ε

(
Ω∞

πn+1

))
=

(
Ω∞

πn+1
, ε−n+1
n

Ω∞

πn+1

)
n

.
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Since η(S) = ΩpS+ · · · is an isomorphism, then we have Ωp is a unit in R̂∞. In particular, since

Ĝm is isomorphic to Ĝa we deduce by definition of the logarithm map λ that η has a series

expansion of the form

η(S) = exp(Ωpλ(S))− 1.

Theorem 4.6. Let µ ∈ S and let k, j be integers such that k > −j ≥ 0. Then

δk,j(⟨e(µ)⟩) =12(−1)k+1−j(k − 1)!fk
∑
a∈I

µ(a)(Na− ψk(a)ψj(a))(
1− ψ

k−j
(p)

Npk

)(
2π√
dK

)−j

ΩjpΩ
j−k
∞ L(ψ

k−j
, k).

Proof. The proof is based on Katz formulae [Kat76] and can be read in full detail in Yager’s

paper [Yag82] Theorem 15.
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CHAPTER 5

p-adic Interpolation

5.1 Two variable p-adic measures

5.1.1 Basic results on power series

Lemma 5.1.1 (Division algorithm). LetA a complete valuation ring with m maximal ideal and residue

field of characteristic p. Let Λ = A [[T1, · · · , Tn]], g ∈ Λ and fi ∈ A [[Ti]] such that fi ̸∈ mA [[Ti]] for

i = 1, . . . , n. Let mi the largest integer such that fi ∈ mΛ + (Tmi
i ). Then

g = q1f1 + · · · qnfn + r (5.1)

with qi ∈ Λ and r ∈ A [T1, . . . , Tn].

Proof. Let ui ∈ A× the coefficient of Tmi
i in fi i.e. fi is of the form fi = aiT

mi
i + bi with

bi ∈ mA[T1, . . . , Tn] and ai ∈ Λ such that ai ≡ u mod deg 1. In particular, we have ai ∈ Λ×. Let

q′0,i ∈ Λ and r0 ∈ A[T1, . . . , Tn] such that

g = q′0,1T
mi
1 + · · ·+ q′0,nT

mn
n + r0.

Taking q0,i = a−1
i q′0,i we can rewrite

g = q0,1a1T
mi
1 + · · ·+ q0,nanT

mn
n + r0.

Since fi ≡ aiTi mod mΛ we deduce

g ≡ q0,1f1 + · · ·+ q0,nfn + r0 mod mΛ.

Consider now g1 = g− q0,1f1−· · ·+ q0,nfn− r0 ∈ mΛ and repeat the procedure finding q1,i ∈ Λ

such that

g1 ≡ q1,1f1 + · · ·+ q1,nfn + r1 mod m2Λ.

In this way, we obtain the following congruence

g ≡ (q0,1 + q1,1)f1 + · · ·+ (qn,1 + qn,1)fn + (r0 + r1) mod m2Λ.
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Iterating this argument we define qi = q0,i + q1,i + · · · , r = r0 + r1 + · · · for i = 1, . . . , n that

satisfy the equality

g = q1f1 + · · ·+ qnfn + r.

Observe that by construction we have that the maximal exponent of Ti in r is less than mi.

Definition 5.1. A distinguished polynomial p ∈ A[T ] is a polynomial with leading coefficient 1 and

such that p ≡ T deg p mod mA[T ].

Theorem 5.1 (Weierstrass preparation). Let g ∈ A[[T ]] be a power series such that g ̸∈ mA[[T ]].

Then there exists a unique distinguished polynomial p ∈ A[T ] and a unit u ∈ A[[T ]]× such that

g = up.

Proof. Let n ≥ 0 be an integer such that g ∈ mA[[T ]] + (Tn) and denote u0 ∈ A[[T ]]× the

coefficient of Tn in g. Applying the division algorithm, we obtain a unique q ∈ A[[T ]] and

r ∈ mA[T ] with deg r < n such that

Tn = qg + r.

Consider f = Tn − r and observe f is a distinguished polynomial. Furthermore, qu0 ≡ 1

mod deg T and then q is a unit in A[[T ]]. We conclude

g = (Tn − r)q−1 = fu.

Corollary 5.1.1. Let A be a PID ring. Then A[[T ]] is a unique factorization domain.

Proof. Consider π ∈ A such that m = (π). For every g ∈ A[[T ]] there exists n ≥ 0 such that

gπ−n ̸∈ mA[[T ]]. By Weierstrass preparation theorem there exists p ∈ A[T ] and u ∈ A[[T ]]×

such that

g = πnpu.

By the uniqueness of the factorization of p in A[T ] we conclude that g uniquely decomposes in

A[[T ]].

Lemma 5.1.2. Suppose that a p prime number lies in m. Let h ∈ A[[T1, T2]] be a power series, then for

every n ≥ 0 there exists bk,j ∈ A for k, j = 1, . . . pn − 1 such that we have a unique decomposition

h(T1, T2) ≡
pn−1∑
k,j=1

bk,j(1 + T1)
k(1 + T2)

j mod ((1 + T1)
pn − 1, (1 + T2)

pn − 1).

Proof. Observe that ((1 + Ti)
pn − 1) ∈ mA[[Ti]] + (T p

n

i ), then by the division algorithm we can

write

h(T1, T2) = q1(T1, T2)((1 + T1)
pn − 1) + q2(T1, T2)((1 + T2)

pn − 1) + r(T1, T2)
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for qi ∈ A[[Ti]] and r ∈ A[T1, T2] of degree less then n in both T ′
is. Define bk,j ∈ A to be the

coefficients of the polynomial r(T1 − 1, T2 − 1)

r(T1 − 1, T2 − 1) =

pn−1∑
k,j=0

bk,jT
k
1 T

j
2 .

We then conclude

h(T1, T2) ≡ r(T1, T2) ≡
pn−1∑
k,j=1

bk,j(1 + T1)
k(1 + T2)

j mod ((1 + T1)
pn − 1, (1 + T2)

pn − 1).

5.1.2 Γ-transform

Definition 5.2. Let k ≥ 0 be an integer and define the binomial coefficient function
(
x

k

)
: Zp → Zp to

be (
x

k

)
=
x(x− 1) · · · (x− k + 1)

k!
.

Definition 5.3. Let µ be a measure on Zp×Zp with values in A. Then we define the power series

fµ ∈ A[[T1, T2]] associated to µ as follows

fµ(T1, T2) =
∑
n,m≥0

(∫
Z2
p

(
x1
n

)(
x2
m

)
dµ(x1, x2)

)
Tn1 T

m
2 =

=

∫
Z2
p

(1 + T1)
x1(1 + T2)

x2dµ(x1, x2) (5.2)

Conversely, given f ∈ A[[T1, T2]] we would like to associate a unique A-valued measure on µf
to which it corresponds under equation 5.2. By Lemma 5.1.2 we can write

f(T1, T2) ≡
pn−1∑
k,j=0

bk,j(1 + T1)
k(1 + T2)

j mod ((1 + T1)
pn − 1, (1 + T2)

pn − 1).

The following Lemma will give the construction for the measure µf .

Lemma 5.1.3. Let f ∈ A[[T1, T2]] be a power series. Then there exists a unique measure µ for which∫
(k+pn Zp)×(j+pn Zp)

dµ = bk,j . (5.3)

In particular, we obtain fµ = f .

Proof. In order to define a measure µ from a map from the open sets (k + pn Zp) × (j + pn Zp)
to Zp to A we need to verify that it satisfies the distribution relation

µ((k + pn Zp)× (j + pn Zp)) =
p−1∑
r,s=0

µ((k + rpn + pn+1 Zp)× (j + spn + pn+1 Zp)).

Comparing the two decompositions mod pn mod pn+1

f(T1, T2) ≡
pn−1∑
k,j=1

bk,j(1 + T1)
k(1 + T2)

j mod ((1 + T1)
pn − 1, (1 + T2)

pn − 1)
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f(T1, T2) ≡
pn+1−1∑
k,j=1

ck,j(1 + T1)
k(1 + T2)

j mod ((1 + T1)
pn+1

− 1, (1 + T2)
pn+1

− 1)

we obtain the relation

bk,j(1 + T1)
k(1 + T2)

j =

p−1∑
r,s=0

ck+rpn,j+spn(1 + T1)
k+rpn(1 + T2)

j+spn

and in particular

bk,j =

p−1∑
r,s=0

ck+rpn,j+spn .

We conclude µ is an A-valued measure on Z2
p. We now need to show that f = µf . From the

congruence of Lemma 5.1.2 we have

f(T1, T2) ≡
pn−1∑
k,j=1

bk,j(1 + T1)
k(1 + T2)

j ≡
pn−1∑
k,j=1

bk,j

k∑
r=0

j∑
s=0

(
k

r

)(
j

s

)
T r1 T

s
2 ≡

≡
pn−1∑
k,j=1

pn−1∑
r=0

pn−1∑
s=0

bk,j

(
k

r

)(
j

s

)
T r1 T

s
2 mod ((1 + T1)

pn+1

− 1, (1 + T2)
pn+1

− 1).

On the other hand, recall that we can compute the value of the integral of a function φ on Z2
p

using the Riemann sums∫
Z2
p

φdµ = lim
n→∞

∑
(k+pm Zp)×(j+pn Zp)

φ(k, j)µ((k + pn Zp)× (j + pn Zp)).

In particular we obtain∫
Z2
p

(
x1
n

)(
x2
m

)
dµ = lim

n→∞

∑
(k+pn Zp)×(j+pn Zp)

(
k

r

)(
j

s

)
bk,j .

We then conclude fµ = f .

Definition 5.4. Let x a unit in Zp, we write x = ω(x)⟨x⟩, where ω(x) is the Teichmuller character

associated to x and ⟨x⟩ ≡ 1 mod p. Consider (i1, i2) ∈ (Z /(p− 1)Z)× (Z /(p− 1)Z) and f a power

series in A[[T ]] corresponding to a measure µf . We define the Γ-transform

Γ
(i1,i2)
f : Z2

p → A

by

Γ
(i1,i2)
f (s1, s2) =

∫
Z×
p ×Z×

p

⟨x1⟩s1⟨x2⟩s2ωi1(x1)ωi2(x2)dµf . (5.4)

Definition 5.5. Let u be a topological generator of 1 + pZp, then we can define a homomorphism

l : Z×
p → Zp such that

⟨x⟩ = ul(x)

for every x ∈ Z×
p .

Lemma 5.1.4. Let f ∈ A[[T1, T2]] be a power series and take (i1, i2) ∈ Z /(p− 1)Z. Then there exists

f (i1,i2) ∈ A[[T1, T2]] such that for all s1, s2 ∈ Zp we have

Γ
(i1,i2)
f (s1, s2) = f (i1,i2)(us1 − 1, us2 − 1). (5.5)
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Proof. By definition of l homomorphism and Γ-transform we have

Γ
(i1,i2)
f (s1, s2) =

∫
Z×
p ×Z×

p

(1 + us1 − 1)l(x1)(1 + us2 − 1)l(x2)ωi1(x1)ω
i2(x)dµf .

Considering the binomial expansion of the right side we obtain

∑
n,m≥0

(us1 − 1)n(us2 − 1)m
∫
Z×
p ×Z×

p

(
l(x1)

n

)(
l(x2)

m

)
ωi1(x1)ω

i2(x2)dµf .

We can then define f (i1,i2) ∈ A[[T1, T2]] taking the coefficients of Tn1 Tm2 to be∫
Z×
p ×Z×

p

(
l(x1)

n

)(
l(x2)

m

)
ωi1(x1)ω

i2(x2)dµf .

On the ring of power seriesA[[T1, T2]], we can consider the operatorDi defined by (1+Ti)∂/∂Ti.

These operators will play a fundamental role in the interpolation property.

Lemma 5.1.5. Let µ be a measure on Z2
p. Then, for n,m ≥ 0 consider the measures µn,m corresponding

to the power series Dn
1D

m
2 fµ ∈ A[[T1, T2]]. For all measurable functions φ : Z2

p → A we have the

following identity ∫
Z2
p

φ(x1, x2)dµn,m(x1, x2) =

∫
Z2
p

φ(x1, x2)x
n
1x

m
2 dµ.

Proof. We proceed by induction. First of all, consider the measure µ1,0 associated with the

power series D1fµ. Explicitly we have ak,j ∈ A such that

fµ(T1, T2) =
∑
k,j≥0

ak,jT
k
1 T

j
2

and applying D1 operator we get

D1fµ(T1, T2) = (1 + T1)

∑
k,j≥0

kak,jT
k−1
1 T j2

 =
∑
k,j≥0

(kak,j + (k + 1)ak+1,j)T
k
1 T

j
2 .

From equation 5.2 applied to fµ and D1fµ we obtain

fµ(T1, T2) =
∑
k,j≥0

(∫
Z2
p

(
x1
k

)(
x2
j

)
dµ

)
T k1 T

j
2

D1fµ(T1, T2) =
∑
k,j≥0

(∫
Z2
p

(
x1
k

)(
x2
j

)
dµ1,0

)
T k1 T

j
2

and then by previous computation∫
Z2
p

(
x1
k

)(
x2
j

)
dµ1,0 = k

(∫
Z2
p

(
x1
k

)(
x2
j

)
dµ

)
+ (k + 1)

(∫
Z2
p

(
x1
k + 1

)(
x2
j

)
dµ

)
=

=

∫
Z2
p

(
k

(
x1
k

)
+ (k + 1)

(
x1
k + 1

))(
x2
j

)
dµ.
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From the straightforward identity

k

(
x1
k

)
+ (k + 1)

(
x1
k + 1

)
= x1

(
x1
k

)
we conclude ∫

Z2
p

(
x1
k

)(
x2
j

)
dµ1,0 =

∫
Z2
p

(
x1
k

)(
x2
j

)
x1dµ.

Clearly, the case D2fµ is completely symmetric. Consider now n ≥ 1, m ≥ 0 and suppose the

Lemma holds for n− 1. Let g = Dn−1
1 Dm

2 fµ, ν = µn−1,m then we have D1g = Dn
1D

m
2 f and∫

Z2
p

φν1,0 =

∫
Z2
p

φx1ν =

∫
Z2
p

(φx1)x
n−1
1 xm2 µ =

∫
Z2
p

φµn,m.

In particular we have ν1,0 = µn,m. Applying the first step for n = 1 we conclude D1g corre-

sponds to ν1,0 and then Dn
1D

m
2 fµ corresponds to µn,m. The case m ≥ 1 is analogous.

Recall that a measure µ is supported on a measurable subset B of Z2
p if, for all measurable

functions φ : Z2
p → A we have ∫

Z2
p

φµ =

∫
Z2
p

φ1Bµ =

∫
B

φµ.

Lemma 5.1.6. Suppose f ∈ A[[T1, T2]] a power series corresponding to a measure µf supported on

Z×
p ×Z×

p . Let (i1, i2) ∈ (Z /(p − 1)Z)2 be a pair of integers modulo p − 1. Then, for each pair of

integers k1, k2 ≥ 0 such that (k1, k2) ≡ (i1, i2) mod (p− 1) we have

Γ
(i1,i2)
f (k1, k2) = (Dk1

1 D
k2
2 f)(0, 0). (5.6)

Proof. From the definition of the Teichmuller character, we have that for all (x1, x2) ∈ Z×
p ×Z×

p

xk11 x
k2
2 = ⟨x1⟩k1⟨x2⟩k2ω(x1)i1ω(x2)i2 .

From the definition of the Γ-transform (5.4) we have

Γ
(i1,i2)
f (k1, k2) =

∫
Z×
p ×Z×

p

xk11 x
k2
2 dµf

and then in particular, using the previous Lemma, we deduce

Γ
(i1,i2)
f (k1, k2) =

∫
Z×
p ×Z×

p

(
x1
0

)(
x2
0

)
dµ

D
k1
1 D

k2
2 f

where we have used the fact that the binomial function in 0 is the constant 1. From Definition 5.2

of the associated power series to a measure, we conclude Γ
(i1,i2)
f (k1, k2) = (Dk1

1 D
k2
2 )(0, 0).

We conclude the section by giving the construction of the power series corresponding to the

restriction of a measure to Z×
p ×Zp.

Lemma 5.1.7. Let f ∈ A[[T1, T2]] be a power series and consider

f̃(T1, T2) := f(T1, T2)−
1

p

∑
ζp=1

f(ζ(1 + T1)− 1, T2)
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where the sum on the right is taken over the set of all the p-roots of unity on A. Then f̃ ∈ A[[T1, T2]]
and for all measurable functions φ : Z2

p → A,∫
Z2
p

φµf̃ =

∫
Z×
p ×Zp

φµf .

Proof. First of all observe that for n ≥ 0 and g(T1, T2) = (1 + T1)
pn − 1 we have

g(ζ(1 + T1)− 1, T2) = (1 + T1)
pn − 1 = g(T1, T2).

In particular, by Lemma 5.1.2 we have

f(T1, T2) ≡
pn−1∑
k,j=1

bk,j(1 + T1)
k(1 + T2)

j mod ((1 + T1)
pn − 1, (1 + T2)

pn − 1)

and then

f(ζ(1 + T1)− 1, T2) ≡
pn−1∑
k,j=1

bk,jζ
k(1 + T1)

k(1 + T2)
j mod ((1 + T1)

pn − 1, (1 + T2)
pn − 1).

From the fact that
∑
ζ ζ

k is 0 if (k, p) = 1 and 1 otherwise, we deduce that in the decomposition

f̃(T1, T2) ≡
pn−1∑
k,j=1

ck,j(1 + T1)
k(1 + T2)

j mod ((1 + T1)
pn − 1, (1 + T2)

pn − 1)

the coefficients ck,j are

ck,j =

bk,j if (k, p) = 1

0 if (k, p) ̸= 1.

From the Lemma 5.1.3 we conclude that the measure µf̃ is supported on Z×
p ×Zp.

5.2 Construction of G(i1,i2)β

We will denote ι(T ) ∈ R̂∞ the inverse of η(T ). Recall that gβ(T1, T2) ∈ R̂∞ denotes the unique

two variable power series attached to an element β ∈ U∞ defined in Theorem 4.4. Then we

have the following result.

Lemma 5.2.1. Let β ∈ U∞ and consider hβ(T1, T2) = gβ(ι(T1), T2) ∈ R̂∞. The R̂∞-valued measure

on Z2
p corresponding to hβ(T1, T2) is supported on Zp×Z×

p .

Proof. By Theorem 4.4 we have

hβ(T1, T2) ≡
∑

σ∈Gal(Fm/K)

(gσm,β(ι(T1)))pm(1 + T2)
k2(σ) mod ((1 + T2)

pm+1

− 1).

Since k2 take values in Z×
p , then by Lemma 5.1.3 we conclude hβ(T1, T2) corresponds to a mea-

sure supported on Zp×Z×
p .
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Recall that by Lemma 5.1.7 we have that

h̃β(T1, T2) = hβ(T1, T2)−
1

p

∑
ζp=1

hβ(ζ(1 + T1)− 1, T2)

gives rise to a measure supported on Z×
p ×Z×

p .

Lemma 5.2.2. Let k > −j ≥ 0. For each β ∈ U∞ consider h̃β(T1, T2) ∈ R̂∞[[T1, T2]]. Then we have

that

Dk−1
1 D−j

2 h̃β(T1, T2)|(0,0) = Ω1−k
p

(
1− ψ(p)k−j

Np1−j

)
δk,j(β).

Proof. By construction we have ι ◦ η(T ) = T and η(T ) = exp(Ωpλ(T )) − 1. Then we deduce

η′(T ) = exp(Ωpλ(T ))Ωpλ
′(T ) and so

1 = ι′(η(T ))η′(T ) = ι′(η(T ))(1 + η(T ))Ωpλ
′(T )

ι′(η(T ))(1 + η(T )) = (Ωpλ
′(T ))−1.

From this, it follows that

(1 + T1)
d

dT1
f(T1) =

[
(Ωpλ

′(T ))−1 d

dT
f(T )

]
|T=ι(T1)

and in particular

Dk−1
1 D−j

2 h̃β(T1, T2)|(0,0) =
(
Ωpλ

′(T ))−1 ∂

∂T

)k−1

D−j
2 h̃β(η(T ), T2)|(0,0). (5.7)

Recall that by definition of h̃β we have

h̃β(η(T ), T2) = hβ(η(T ), T2)−
1

p

∑
ζp=1

hβ(ζ(1 + η(T ))− 1, T2).

In particular, since ζ − 1 is a point of order p on Gm and ι is an isomorphism then ι(ζ − 1) runs

over the solution the elements of Êπ as ζ runs over the solution set of ζp = 1. Moreover, we

also have that

η(ι(ζ − 1)[+]T ) = (ζ − 1) + η(T ) + (ζ − 1)η(T ) = ζ(1 + η(T ))− 1

and so

hβ(ζ(1 + η(T ))− 1, T2) = hβ(η(ι(ζ − 1)[+]T ), T2) = gβ(ι(ζ − 1)[+]T, T2).

We conclude that

h̃β(η(T ), T2) = gβ(T, T2)−
1

p

∑
ρ∈Êπ

gβ(T [+]ρ, T2).

Using the functional equation of gβ(T1, T2) described in Theorem 4.4 we can rewrite the previ-

ous equation

h̃β(η(T ), T2) = gβ(T, T2)−
π

p
gβ([π]T1, (1 + T2)

k2(φ)
−1

− 1).

Recall that the Frobenius elements φ acts on Êπ∞ via ψ(p) by definition of the Hecke character

then k2(φ) = π by Lemma 2.2.6. Notice that we have

(1 + T )
d

dT
f((1 + T )π

−1

− 1) = π−1

(
(1 +W )

d

dW
f(W )

)
|W=(1+T )π−1−1.
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Then combining all these facts we obtain that equation (5.7) becomes

Dk−1
1 D−j

2 h̃β(T1, T2)|(0,0) =

=

(
(Ωpλ

′(T ))−1 ∂

∂T

)k−1

D−j
2

(
gβ(T, T2)−

π

p
gβ([π]T1, (1 + T2)

π−1

− 1)

)
|(0,0) =

=Ω1−k
p

(
λ′(T )−1 ∂

∂T

)k−1

D−j
2 gβ(T, T2)|(0,0)−

− Ω1−k
p

(
π

p

)k−1−j (
λ′(T )−1 ∂

∂T

)k−1

D−j
2

(
gβ([π]T1, (1 + T2)

π−1

− 1)
)
|(0,0).

In particular, we have(
λ′(T )−1 ∂

∂T

)k−1

D−j
2

(
gβ([π]T1, (1 + T2)

π−1

− 1)
)
|(0,0) =

=πk−1

(
λ′(T )−1 ∂

∂T

)k−1

D−j
2 gβ(T1, (1 + T2)

π−1

− 1)|(0,0) =

=πk−1πj
(
λ′(T )−1 ∂

∂T

)k−1

D−j
2 gβ(T1, T2)|(0,0)

that recombined together gives us

Dk−1
1 D−j

2 h̃β(T1, T2)|(0,0) =

=

(
1− πk−j

p1−j

)
Ω1−k

p

(
λ′(T )−1 ∂

∂T

)k−1

D−j
2 gβ(T, T2)|(0,0).

By Definition 4.3 of δk, j we conclude

Dk−1
1 D−j

2 h̃β(T1, T2)|(0,0) =
(
1− ψ(p)k−j

Np1−j

)
Ω1−k

p δk,j(β)

In the case of the norm-coherent elliptic units e(µ), using the results of Section 4.2 we then have

Dk−1
1 D−j

2 h̃e(µ)(T1, T2)|(0,0) =
(
1− ψ(p)k−j

Np1−j

)
12(−1)k+1−j(k − 1)!fk

∑
a∈I

µ(a)(Na− ψk(a)ψj(a))(
1− ψ

k−j
(p)

Npk

)(
2π√
dK

)1−j−k

ΩjpΩ
j−k
∞ L(ψ

k−j
, k)

Theorem 5.2. Let i1, i2 be integers modulo (p−1) and let β ∈ U∞. Then there is a unique power series

G(i1,i2)β (T1, T2) ∈ R̂∞[[T1, T2]] such that for all k > −j ≥ 0 satisfying (k, j) ≡ (i1, i2) mod (p− 1),

G(i1,i2)β (uk − 1, uj − 1) =

(
1− ψ(p)k−j

Np1−j

)
Ω1−k

p δk,j(β).

Moreover, if h ∈ Λ,

G(i1,i2)hβ (T1, T2) = h(T1, T2)G(i1,i2)β (T1, T2).

Proof. First of all, observe that by Lemma 5.1.7 and Lemma 5.2.1 we have that h̃β corresponds

to a measure supported on Z×
p ×Z×

p . Then by Lemma5.1.6 we obtain

Γ
(i1−1,−i2)
h̃β

(k − 1,−j) = Dk−1
1 D−j

2 h̃β |(0,0) =
(
1− ψ(p)k−j

Np1−j

)
Ω1−k

p δk,j(β).
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On the other hand, Lemma 5.1.4 shows that there exists a power series h̃(i1−1,−i2)
β ∈ R̂∞[[T1, T2]]

such that for all s1, s2 ∈ Zp,

Γ
(i1−1,−i2)
h̃β

(s1, s2) = h̃
(i1−1,−i2)
β (us1 − 1, us2−1).

We can then define G(i1,i2)β ∈ R̂∞[[T1, T2]] to be

G(i1,i2)β (T1, T2) = h̃
(i1−1,−i2)
β (u−1(1 + T1)− 1, (1 + T2)

−1 − 1).

Observe that then we have

G(i1,i2)β (uk − 1, uj − 1) = h̃
(i1−1,−i2)
β (uk−1 − 1, u−j − 1) =

= Γ
(i1−1,−i2)
h̃β

(k − 1,−j) =

=

(
1− ψ(p)k−j

Np1−j

)
Ω1−k

p δk,j(β).

Let now h ∈ Λ and applying equation (4.3) we deduce

G(i1,i2)h(T1,T2)β
(uk − 1, uj − 1) =

(
1− ψ(p)k−j

Np1−j

)
Ω1−k

p δk,j(h(T1, T2)β) =

= h(uk − 1, uj − 1)

(
1− ψ(p)k−j

Np1−j

)
Ω1−k

p δk,j(β) =

= h(uk − 1, uj − 1)G(i1,i2)β (uk − 1, uj − 1).

By uniqueness of the power series G(i1,i2)β (T1, T2) we conclude

G(i1,i2)h(T1,T2)β
(T1, T2) = h(T1, T2)G(i1,i2)β (T1, T2).

5.3 Interpolation of L-values

For k > −j ≥ 0 we introduce for simplicity the following notation

L∞(ψ
k+j

, k) =

(
1− ψ(p)k+j

Npj+1

)(
1− ψ(p)k+j

Npk

)(
2π√
dK

)
Ω−(k+j)

∞ L(ψ
k+j

, k)

Let x ∈ Z×
p and consider ω : Z×

p → (Z /pZ)× the Teichmuller character, then we have x =

ω(x)⟨x⟩. Recall Definition 5.5 where for u topological generator of 1 + pZp, then we can define

a homorphism l : Z×
p → Zp such that

⟨x⟩ = ul(x)

for every x ∈ Z×
p .

Definition 5.6. Let µ ∈ S and i1, i2 integers modulo p− 1, then we define

h(i1,i2)µ (T1, T2) =
∑
a∈I

µ(a)
(
Na− ωi1(ψ(a))ωi2(ψ(a))(1 + T1)

l(ψ(a))(1 + T2)
l(ψ(a))

)
.
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Observe that with the previous definition we have for all (k1, k2) ≡ (i1, i2) mod (p− 1)

h(i1,i2)µ (uk1 − 1, uk2 − 1) =
∑
a∈I

µ(a)
(
Na− ωi1(ψ(a))ωi2(ψ(a))uk1l(ψ(a))uk2l(ψ(a))

)
=

=
∑
a∈I

(
Na− ψ(a)ψ(a)

)
Lemma 5.3.1. Let H(i1,i2) to be the Λ-module generated by h(i1,i2)µ (T1, T2) for all µ ∈ S. Then we have

(i) H(0,0) = (T1, T2)Λ,

(ii) H(1,1) = (T1 + 1− u, T2 + 1− u)Λ,

(iii) H(i1,i2) = Λ if (i1, i2) ̸≡ (0, 0) and (i1, i2) ̸≡ (1, 1) mod (p− 1).

Proof. Let a be an integer which has order (p − 1) in the group (Z /p2 Z)×. Suppose firstly that

i1 ̸≡ i1 mod (p − 1). We want to construct an element µ1 ∈ S such that h(i1,i2)µ1 is a unit in Λ.

Let α1, α2 ∈ O satisfying the following conditions

α1 ≡ 1 mod fp, α1 ≡ a mod p,

α2 ≡ 1 mod fp, α2 ≡ a mod p

with α1, α2 coprime with each element of S. Then we have that a1 = (α1), a2 = (α2) belong to

I . We define µ1 : I → Z by

µ1(a1) = Na2 − 1,

µ1(a2) = 1−Na1,

µ1(a) = 0, for all a ̸= a1, a2.

Then observe we have

h(i1,i2)µ1
(0, 0) =

∑
a∈I

µ1(a)
(
Na− ωi1(ψ(a))ωi2(ψ(a))

)
=

=(Na2 − 1)
(
Na1 − ωi1(ψ(a1))ωi2(ψ(a1))

)
+

+ (1−Na1)
(
Na2 − ωi1(ψ(a2))ωi2(ψ(a2))

)
Recall that by definition of the Hecke character ψ we have a multiplicative map from {β ∈
O : (βO, f) = 1} to O× defined by ε(β) = ψ(βO)/β. By definition of the conductor, ε factors

through (O/f)×. We then conclude ψ(a1) = α1, ψ(a2) = α2 since ε(α1) = ε(α2) = ε(1). In

particular, we then deduce

ωi1(ψ(a1))ω
i2(ψ(a1)) = ωi1(α1)ω

i2(α1) = ωi2(α1)

ωi1(ψ(a2))ω
i2(ψ(a2)) = ωi1(α2)ω

i2(α2) = ωi1(α2).

Considering h(i1,i2)µ1 (0, 0) modulo p we get

h(i1,i2)µ1
(0, 0) =(Na2 − 1)

(
Na1 − ωi2(α1)

)
+ (1−Na1)

(
Na2 − ωi1(α2)

)
≡

≡(a− 1)
(
a− ai2

)
+ (1− a)

(
a− ai1

)
≡

≡ (a− 1)(ai1 − ai2) mod p.
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Since i1 ̸= i2 we conclude h(i1,i2)µ1 (0, 0) is a unit. Hence in this case H(i1,i2) = Λ.

Consider now the case i1 ≡ i2 and i1 ̸≡ 0, 1 mod p. Let α3, α4 ∈ O satisfying the following

conditions
α3 ≡ 1 mod fp, α3 ≡ a mod p,

α4 ≡ 1 mod fp, α4 ≡ −1 mod p

with α3, α4 coprime with each element of S. Then we have that a3 = (α3), a4 = (α4) belong to

I . We define µ2 : I → Z by

µ2(a3) = Na4 − 1,

µ2(a4) = 1−Na3,

µ2(a) = 0, for all a ̸= a3, a4.

By the analogous argument of the previous case, we get

h(i1,i1)µ2
(0, 0) =(Na4 − 1)

(
Na3 − ωi1(ψ(a3)ψ(a3))

)
+

+ (1−Na3)
(
Na4 − ωi1(ψ(a4)ψ(a4))

)
=

=(Na4 − 1)
(
Na3 − ωi1(α3)

)
+ (1−Na3)

(
Na4 − ωi1(α4)

)
.

Considering h(i1,i1)µ2 (0, 0) modulo p we get

h(i1,i1)µ2
(0, 0) ≡ 2(ai1 − 1) mod p if i1 is even,

h(i1,i1)µ2
(0, 0) ≡ 2(ai1 − a) mod p if i1 is odd.

Since i1 ̸≡ 1, 0 we conclude h(i1,i1)µ2 is a unit in Λ and then H(i1,i1) = Λ.

It remains to study the cases (i1, i2) ≡ (0, 0) or (1, 1) mod (p − 1). Observe firstly that for all

µ ∈ S,

h(0,0)µ (0, 0) =
∑
a∈I

µ(a)(Na− 1) = 0,

h(1,1)µ (u− 1, u− 1) =
∑
a∈I

µ(a)(Na− ψ(a)ψ(a)) = 0.

We then deduce h(0,0)µ (T1, T2) ∈ (T1, T2)Λ and h
(1,1)
µ (T1, T2) ∈ (T1 − u + 1, T2 − u + 1)Λ. Thus,

to prove the lemma it will suffice to show that H(0,0) contains T1 and T2 and H(1,1) contains

T1 − u+ 1 and T2 − u+ 1. Observe that it is enough to produce elements that are congruent to

the claimed generators modulo (p2, (1 + T1)
p − 1, (1 + T2)

p − 1).

Let α5, α6 ∈ O satisfying the following conditions

α5 ≡ 1 mod fp2, α5 ≡ u mod p2,

α6 ≡ 1 mod fp2, α6 ≡ au mod p2

with α5, α6 coprime with each element of S. Then we have that a5 = (α5), a6 = (α6) belong to

I . We define µ3 : I → Z by

µ3(a5) = Na6 − 1,

µ3(a6) = 1−Na5,

µ3(a) = 0, for all a ̸= a5, a6.
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Using the same arguments as before we get

h(0,0)µ3
(T1, T2) =(Na6 − 1)

(
Na5 − (1 + T1)

l(α5)(1 + T2)
l(α5)

)
+

+ (1−Na5)
(
Na6 − (1 + T1)

l(α6)(1 + T2)
l(α6)

)
Considering h(0,0)µ3 modulo ((1 + T1)

p − 1, (1 + T2)
p − 1) we obtain

h(0,0)µ3
(T1, T2) ≡ (1− a)uT1 mod ((1 + T1)

p − 1, (1 + T2)
p − 1).

and so H(0,0) contains an element congruent to T1 modulo ((1 + T1)
p − 1, (1 + T2)

p − 1). The

construction of an element congruent to T2 is completely symmetrical.

Let α7, α8 ∈ O satisfying the following conditions

α7 ≡ 1 mod fp2, α7 ≡ u mod p2,

α8 ≡ 1 mod fp2, α8 ≡ a mod p2

with α7, α8 coprime with each element of S. Then we have that a7 = (α7), a8 = (α8) belong to

I . We define µ4 : I → Z by

µ4(a7) = Na8 − 1,

µ4(a8) = 1−Na7,

µ4(a) = 0, for all a ̸= a7, a8.

Using the same arguments as before we get

h(1,1)µ4
(T1, T2) =(Na8 − 1)

(
Na7 − ω(Na7)(1 + T1)

l(α7)(1 + T2)
l(α7)

)
+

+ (1−Na7)
(
Na8 − ω(Na8)(1 + T1)

l(α8)(1 + T2)
l(α8)

)
Considering h(1,1)µ4 modulo (p2, (1 + T1)

p − 1, (1 + T2)
p − 1) we obtain

h(1,1)µ4
(T1, T2) ≡ (1− a)(T2 + 1− u) mod ((1 + T1)

p − 1, (1 + T2)
p − 1).

and soH(1,1) contains an element congruent to T2−u+1 modulo (p2, (1+T1)
p−1, (1+T2)p−1).

The construction of an element congruent to T1 − u+ 1 is completely symmetrical.

Theorem 5.3. Let i1, i2 be integers modulo p − 1. Then there is a power series G(i1,i2)(T1, T2) ∈
R̂∞[[T1, T2]] such that, for all integers k1 > −k2 ≥ 0 and (k1, k2) ≡ (i1, i2) mod (p− 1),

G(i1,i2)(uk1 − 1, uk2 − 1) = (k1 − 1)!Ωk2−k1p L∞(ψ
k1−k2

, k1)

Proof. Let µ ∈ S , consider the elliptic unit ⟨e(µ)⟩ ∈ C∞ defined in Corollary 3.7.3 then by

Theorem 5.2 and Theorem 4.6 we have

G(i1,i2)⟨e(µ)⟩ (u
k1 − 1, uk2 − 1) =

(
1− ψ(p)k1−k2

Np1−k2

)
Ω1−k1

p δk1,k2(⟨e(µ)⟩) =

=Ω1+k2−k1
p 12(−1)k1+1−k2(k1 − 1)!fk1

hi1,i2µ (uk1 − 1, uk2 − 1)L∞(ψ
k1−k2

, k1).
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Consider the power series g(T1, T2) ∈ Zp[[T1, T2]] defined by

g(T1, T2) = 12(−1)1+i1−i2ωi1(f)(1 + T1)
l(f).

In particular we have g(uk1 − 1, uk2 − 1) = 12(−1)1+k1−k2fk1 whenever (k1, k2) ≡ (i1, i2)

mod (p − 1). Observe that g(T1, T2) is a unit in Λ since p is coprime with 12f . Consider then

h(T1, T2) = g(T1, T2)hµ(T1, T2) ∈ Λ, we can rewrite the previous equation as

G(i1,i2)⟨e(µ)⟩ (u
k1 − 1, uk2 − 1) = h(uk1 − 1, uk2 − 1)Ω1+k2−k1

p (k1 − 1)!L∞(ψ
k1−k2

, k1).

If (i1, i2) ̸≡ (0, 0), (1, 1) mod (p − 1) then by the previous lemma there exists µ ∈ S such that

hµ is invertible. In this case, we consider β ∈ U∞ to be the unit given by h−1(T1, T2)⟨e(µ)⟩, and

then by Theorem 5.2 we have that the value of the power series G(i1,i2)β at (uk1 − 1, uk2 − 1) is

G(i1,i2)β (uk1 − 1, uk2 − 1) = h−1(uk1 − 1, uk2 − 1)G(i1,i2)⟨e(µ)⟩ (u
k1 − 1, uk2 − 1) =

= Ω1+k2−k1
p (k1 − 1)!L∞(ψ

k1−k2
, k1).

It remains to study the cases (i1, i2) ≡ (0, 0) and (i1, i2) ≡ (1, 1) mod (p− 1).

Suppose (i1, i2) ≡ (0, 0) mod (p − 1). By the previous lemma we have H(0,0) = (T1, T2)Λ.

Let e0 be the unit in D corresponding to the power series he0 = T2 ∈ H(0,0). We then have

G(0,0)e0 (uk1 − 1, 0) = 0 for all k1 ≡ 0 mod (p− 1). In particular

G(0,0)e0 (T1, T2) = ΩpT2G(0,0)(T1, T2)

for some power series G(0,0)(T1, T2). From the previous equation G(0,0)(T1, T2) has the desired

properties.

Suppose (i1, i2) ≡ (1, 1) mod (p− 1). Let e1 be the unit in D corresponding to the power series

he1 = T1 +1− u ∈ H(1,1). We then have G(0,0)e0 (u− 1, uk2 − 1) = 0 for all k2 ≡ 1 mod (p− 1). In

particular

G(1,1)e1 (T1, T2) = Ωp(T1 + 1− u)G(1,1)(T1, T2)

for some power series G(1,1)(T1, T2). From the previous equation G(1,1)(T1, T2) has the desired

properties.
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Two variable theta function

6.1 Two variable Theta function

K. Bannai and S. Kobayashi [BK10] studied a particular type of two variable Theta function that

is the generating function for Eisenstein-Kronecker numbers. Through Mumford’s theory, they

reproved the algebraicity of these numbers and they constructed a p-adic measure using the

formal power series associated.

6.1.1 Definition and Laurent expansion

Recall that we previously defined the functions for a lattice L = ω1 Z+ω2 Z

σ(z, L) = z
∏

ω∈L−{0}

(
1− z

ω

)
exp

(
z

ω
+

1

2

( z
ω

)2)
s2(L) = lim

s→0+

∑
ω∈L−{0}

ω−2|ω|−2s.

Definition 6.1. We define the Kronecker theta function for L to be

Θ(z, w, L) = exp (−s2zw)
σ(z + w,L)

σ(z, L)σ(w,L)
.

Prop. 6.1.1 (Transformation formula). For any γ1, γ2 ∈ L we have

Θ(z + γ1, w + γ2, L) = exp

(
γ1γ2
A(L)

)
exp

(
zγ2 + wγ1
A(L)

)
Θ(z, w, L). (6.1)

For any c ∈ C we have

Θ(cz, cw, cL) =
1

c
Θ(z, w, L) (6.2)

Lemma 6.1.1. Let f(z, w) = exp(zw/A)H1(z, w, 1). Then this function satisfies the following prop-

erties

(i) f(z, w) satisfies the transformation formula (6.1),

(ii) f(z, w) is a meromorphic function in z and w, holomorphic except simple poles when z ∈ L or

w ∈ L,
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(iii) the residue of f(z, w) at z = 0 and w = 0 is equal to one.

Lemma 6.1.2. Any holomorphic function f(z, w) on C×C satisfying the transformation formula

f(z + u,w + v) = exp

(
uv

A

)
exp

(
zv + wu

A

)
for any u, v ∈ L is identically equal to zero.

Theorem 6.1 (Kronecker). The Kronecker theta function is related to the Eisenstein-Kronecker-Lerch

series as follows

Θ(z, w) = exp

(
zw

A

)
H1(z, w, 1).

In particular, the theta function Θ(z, w) is holomorphic on C×C except for simple poles corresponding

to z ∈ Γ or w ∈ Γ. In particular exp(zw/A)H1(z, w, 1) has residue 1 along z = 0 and w = 0.

Proof. See [BK10].1.13.

Definition 6.2. For any z0, w0 ∈ C we define the translated Kronecker theta function by

Θz0,w0
(z, w, L) = exp

(
− z0w0

A(L)

)
exp

(
−zw0 + wz0

A(L)

)
Θ(z + z0, w + w0, L).

Lemma 6.1.3. For any z0, w0 ∈ C and γ, γ′ ∈ L we have that the translated Kronecker theta function

satisfies the following relation

Θz0+γ,w0+γ′(z, w, L) = ⟨w0, γ⟩LΘz0,w0(z, w, L). (6.3)

For any c ∈ C we have

Θcz0,cw0
(cz, cw, cL) =

1

c
Θz0,w0

(z, w, L). (6.4)

Proof. It follows by a straightforward computation. By definition and the transformation for-

mula (6.1) we have that the left-hand side is

Θz0+γ,w0+γ′(z, w) = exp

(
− (z0 + γ)(w0 + γ′)

A

)
exp

(
−z(w0 + γ′) + w(z0 + γ)

A

)
Θ(z + z0 + γ,w + w0 + γ′) =

=exp

(
− (z0 + γ)(w0 + γ′)

A

)
exp

(
−z(w0 + γ′) + w(z0 + γ)

A

)

exp

(
γγ′

A

)
exp

(
(z + z0)γ

′ + (w + w0)γ

A

)
Θ(z + z0, w + w0).

The right side is equal to

⟨w0, γ⟩Θz0,w0(z, w) = exp

(
w0γ − γw0

A

)
exp

(
−z0w0

A

)
exp

(
−zw0 + wz0

A

)
Θ(z + z0, w + w0).

Comparing the exponential factor we conclude the desired equation.

For the homothety relation observe that we have

Θcz0,cw0(cz, cw, cL) = exp

(
−cz0cw0

A(cL)

)
exp

(
−czcw0 + cwcz0

A(cL)

)
Θ(cz + cz0, cw + cw0, cL)
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and using the fact that A(cL) = NcA(L) and the homothety relation (6.2) we conclude

Θcz0,cw0
(cz, cw, cL) =

1

c
Θz0,w0

(z, w, L).

Lemma 6.1.4. For any γ ∈ L, we have

lim
z→−u+γ

(z + u− γ)Θu,v(z, w) = ⟨v, γ⟩ exp
(
(γ − u)w

A

)
lim

w→−v+γ
(w + v − γ)Θu,v(z, w) = ⟨u, γ − v⟩ exp

(
z(γ − v)

A

)

Proof. This follows from direct calculations applying Kronecker’s theorem. In fact we have

Θu,v(z, w) = exp

(
−uv
A

)
exp

(
−zv + wu

A

)
Θ(z + u,w + v).

By Kronecker’s theorem we know that Θ(z, w) has a simple pole at z ∈ Γ, w ∈ Γ with residue 1

along z = 0 and w = 0. To calculate the residues we use the transformation formula (6.1)

Θ(z + γ,w) = exp

(
wγ

A

)
Θ(z, w)

deducing that the residue of Θ(z, w) at z = γ is exp(wγ/A) and then

lim
z→−u+γ

(z + u− γ) exp
(
− (z + u)v + wu

A

)
Θ(z + u,w + v) =

= exp

(
−γv + wu

A

)
exp

(
(w + v)γ

A

)
= ⟨v, γ⟩ exp

(
(γ − u)w

A

)
.

The other case is analogous.

In the same fashion as the previous definition of the theta function, the two variable form satis-

fies a distribution relation.

Prop. 6.1.2 (Distribution relation). Let a, b be integral ideals ofOK such that (ab, b) = 1. Let ϵ ∈ OK
be such that ϵ ≡ 1 mod ab and ϵ ≡ 0 mod b. Then∑

α∈a−1L/L

β∈b−1L/L

⟨ϵα,w0⟩LΘz0+ϵα,w0+ϵβ(z, w, L) = N(ab)ΘNaz0,Nbw0
(Naz,Nbw, abL) (6.5)

Proof. First of all observe that the quantity ⟨ϵα,w0⟩LΘz0+ϵα,w0+ϵβ(z, w, L) do not depend on the

choice of representatives of α and β. Indeed, let α′ = α + γ1 and β′ = β + γ2 with γ1, γ2 ∈ L,

then by the previous lemma we get

Θz0+ϵα′,w0+ϵβ′(z, w) = ⟨w0 + ϵβ, ϵγ1⟩Θz0+ϵα,w0+ϵβ(z, w) =

= ⟨w0, ϵγ1⟩Θz0+ϵα,w0+ϵβ(z, w)
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where we have used the fact that ⟨ϵβ, ϵγ1⟩ = ⟨ϵϵβ, γ1⟩ by Lemma 3.2.1 and ϵβ ∈ L since ϵ ∈ b.

From this we deduce

⟨ϵα,w0⟩LΘz0+ϵα,w0
(z, w, L) = ⟨ϵα′, w0⟩LΘz0+ϵα′,w0

(z, w, L).

We will now consider the case z0 = 0, w0 = 0, see [BK10].1.16 for the translated case. We show

that both sides have the same transformation formula with respect to abL. For u, v ∈ abL, we

have by equation (6.1)

Θ(Na(z + u), Nb(w + v), abL) = exp

(
NauNbv

A(abL)

)
exp

(
zNbv + wNau

A(abL)

)
Θ(Naz,Nbw, abL) =

=exp

(
uv

A(L)

)
exp

(
zv + wu

A(L)

)
Θ(Naz,Nbw, abL). (6.6)

Now observe that by Lemma 3.2.1 we have ⟨ϵα, v⟩L = ⟨ϵ, αv⟩L and then since v ∈ abL and

α ∈ α−1L/L we conclude ⟨ϵα, v⟩L = 1. Analogously we have ⟨ϵβ, u⟩L = 1. Therefore, using

Lemma 6.1.3, we deduce

Θϵα+u,ϵβ+v(z, w, L) = ⟨ϵβ, u⟩LΘϵα,ϵβ(z, w, L) = Θϵα,ϵβ(z, w, L).

Observe that we have

Θϵα,ϵβ(z + u,w + v, L) = exp

(
−ϵαϵβ

A

)
exp

(
− (z + u)ϵβ + (w + v)ϵα

A

)
Θ(z + ϵα+ u,w + ϵα+ v, L) =

Θϵα+u,ϵβ+v(z, w, L) = exp

(
− (ϵα+ u)(ϵβ + v)

A

)
exp

(
−z(ϵβ + v) + w(ϵα+ u)

A

)
Θ(z + ϵα+ u,w + ϵβ + v)

and hence comparing the exponential factor we deduce the following translation relation

Θϵα,ϵβ(z + u,w + v, L) = exp

(
uv

A(L)

)
exp

(
zv + wu

A(L)

)
Θϵα+u,ϵβ+v(z, w, L) =

=exp

(
uv

A(L)

)
exp

(
zv + wu

A(L)

)
Θϵα,ϵβ(z, w, L). (6.7)

From this equation and (6.6) we conclude that both satisfy the same transformation formula

with respect to abL.

Next, we show that both sides have the same poles with the same residues. By Kronecker’s

theorem 6.1 we have that the left hand side of (6.5) has simple poles at most on (z, w) where

z = −ϵα0 + γ or w = −ϵβ0 + γ for some α0 ∈ a−1L, β0 ∈ b−1L and γ ∈ L. By the previous

lemma, we have

lim
z→−ϵα0+γ

(z + ϵα0 + γ)
∑

α∈a−1L/L

β∈b−1L/L

Θϵα,ϵβ(z, w,Γ) =
∑

β∈b−1L/L

⟨ϵβ, γ⟩ exp
(
(γ − ϵα0)w

A

)
=

=


N(b) exp

(
(γ − ϵα0)w

A

)
if γ ∈ bL

0 otherwise.

Hence the left hand side has a pole at z ∈ (ϵa−1+ b)L = ba−1L. By Kronecker’s theorem 6.1 we

have that the righ hand side of equation (6.5) has the same poles for z with the same residues.

The case of w is analogous.
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Theorem 6.2. For any z0, w0 ∈ C we have that the Laurent expansion of Θz0,w0
(z, w) at the origin is

given by

Θz0,w0(z, w) = ⟨w0, z0⟩δz0z−1 + δw0w
−1 +

∑
k,j≥0

(−1)k+jEj,k+1(z0, w0)

Ajj!
zkwj

where δx = 1 if x ∈ L and is zero otherwise.

Proof. Let H̃j+k(z, w, k) = exp(−wz/A)Hj+k(z, w, k). Then by Lemma 3.2.2 we obtain

∂zH̃j+k(z, w, k) = −kH̃j+k+1(z, w, k)

∂wH̃j+k(z, w, k) = −
1

A
H̃j+k+1(z, w, k).

Hence when z0, w0 ̸∈ Γ, the coefficient of z andw in the Taylor expansion of H̃1(z+z0, w+w0, 1)

at the origin is given by ∑
k,j≥0

(−1)k+j H̃k+j+1(z0, w0, k + 1)

j!Aj
zkwj .

By definition of Θ(z0,w0)(z, w) and Kronecker’s theorem we get

Θ(z0,w0)(z, w) = exp

(
w0z0
A

)
exp

(
(z + z0)w + (w + w0)z

A

)
H̃1(z + z0, w + w0, 1).

Sine Θ(z0,w0)(z, w) is holomorphic at the origin, the assertion follows form the fact thatEj,k(z0, w0) =

exp(w0z0/A)H̃j+k(z0, w0, k). The case when z0, w0 ∈ L follows using similar argument, paying

careful attention to the poles. See [BK10] 1.4.

6.1.2 Tables of values

Using the results of the previous sections, we can now compute the values of the Eisentein

numbers Ej,k through the expansion of the two variables theta function Θ(z0,w0)(z, w). In the

following tables, we show the coefficients of the expansion.

L = Ω∞(Z+iZ) with Ω∞ ≈ 1.85407467730137191843385034720−1.85407467730137191843385034720i

Θ(0,0)(x, y) 1 x x2 x3 x4 x5 x6 x7

1 0 0 0 1
15 0 0 0 − 1

525

y 0 0 1
6 0 0 0 − 2

315 0

y2 0 1
6 0 0 0 − 1

90 0 0

y3 1
15 0 0 0 − 1

72 0 0 0

y4 0 0 0 − 1
72 0 0 0 1

7560

y5 0 0 − 1
90 0 0 0 1

10800 0

y6 0 − 1
315 0 0 0 1

10800 0 0

y7 − 1
525 0 0 0 1

7560 0 0 0

Θ(w1/2,0)(x, y) 1 x x2 x3 x4 x5 x6 x7

1 0 1
2 i 0 1

40 0 − 1
80 i 0 1

9600

y i 0 1
6 0 − 1

24 i 0 1
1680 0

y2 0 1
2 0 − 1

12 i 0 1
720 0 − 13

10080 i

y3 2
3 0 − 1

6 i 0 0 0 1
720 i 0

y4 0 − 1
3 i 0 − 1

72 0 1
720 i 0 1

20160

y5 − 2
5 i 0 − 2

30 0 1
360 i 0 1

10800 0

y6 0 − 8
45 0 − 1

90 i 0 1
3600 0 − 1

151200 i

y7 − 8
35 0 13

315 0 1
756 0 − 1

75600 0
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L = Ω∞(Z+
√
−2Z) with Ω∞ ≈ −0.173822480149928796548653183122i

Θ(0,0)(x, y) 1 x x2 x3 x4 x5 x6 x7

1 0 35 0 -2450 0 68600 0 -2572500

y 35 0 − 11024
2 0 154350 0 -6174000 0

y2 0 − 11024
2 0 385874

2 0 -8103375 0 162067500

y3 -2450 0 385874
2 0 − 67528125

8 0 94539375 0

y4 0 154350 0 − 67528125
8 0 283618125

8 0 − 15598996875
4

y5 68600 0 -8103375 0 283618125
8 0 − 45662518125

16 0

y6 0 -6174000 0 94539375 0 − 45662518125
16 0 287872396875

16

y7 -2572500 0 162067500 0 − 15598996875
4 0 287872396875

16 0

Θ(w1/2,0)(x, y) 1 x x2 x3 x4 x5 x6 x7

1 0 -70 0 1225 0 -85750 0 4501875
2

y -105 0 0 0 -231525 0 4630500 0

y2 0 − 11025
2 0 -385875 0 8103375

2 0 -202584375

y3 -7350 0 − 1157625
2 0 0 0 − 283618125

2 0

y4 0 -771750 0 − 67528125
8 0 −−283618125

4 0 15598996875
8

y5 -617400 0 -24310125 0 − 850854375
8 0 0 0

y6 0 -43218000 0 -472696875 0 − 45662518125
16 0 − 287872396875

8

y7 -38587500 0 -1458607500 0 − 46796990625
4 0 − 863617190625

16 0

L = Ω∞(Z+ 1+
√
−3

2 Z) with Ω∞ ≈ 2.10327315798818139176252861858−1.21432532394379080590997084489i

Θ(0,0)(x, y) 1 x x2 x3 x4 x5 x6 x7

1 0 0 0 0 0 1
35 0 0

y 0 0 0 0 1
10 0 0 0

y2 0 0 0 1
6 0 0 0 0

y3 0 0 1
6 0 0 0 0 0

y4 0 1
10 0 0 0 0 0 − 1

840

y5 1
35 0 0 0 0 0 − 1

900 0

y6 0 0 0 0 0 − 1
900 0 0

y7 0 0 0 0 − 1
840 0 0 0

Θ(w1/2,0)(x, y) 1 x x2 x3 x4 x5 x6 x7

1 0 1
2 0 − 1

8 0 − 1
112 0 − 3

896

y 1 0 − 1
2 0 − 1

40 0 − 1
80 0

y2 0 -1 0 0 0 − 1
40 0 − 1

280

y3 -1 0 1
6 0 − 1

24 0 1
240 0

y4 0 1
2 0 1

12 0 1
240 0 1

3360

y5 3
5 0 − 1

5 0 1
120 0 0 0

y6 0 − 2
5 0 1

30 0 − 1
900 0 1

25200

y7 − 3
7 0 4

35 0 − 1
168 0 1

12600 0

L = Ω∞(Z+ 1+
√
−7

2 Z) with Ω∞ ≈ 0.249589467962725575672578641846

Θ(0,0)(x, y) 1 x x2 x3 x4 x5 x6 x7

1 0 -15 0 -525 0 -9450 0 -118125

y -15 0 -1200 0 -25200 0 -252000 0

y2 0 -1200 0 -36000 0 -252000 0 -7560000

y3 -525 0 -36000 0 -180000 0 -7560000 0

y4 0 -25200 0 -180000 0 -7020000 0 -37800000

y5 -9450 0 -252000 0 -7020000 0 -18360000 0

y6 0 -252000 0 -7560000 0 -18360000 0 − 745200000
7

y7 -118125 0 -7560000 0 -37800000 0 − 745200000
7 0

78



CHAPTER 6: TWO VARIABLE THETA FUNCTION

Θ(w1/2,0)(x, y) 1 x x2 x3 x4 x5 x6 x7

1 0 105
4 + 15

√
−7

4 0 7875
16 −

1575
√
−7

16

0 259875
32 +

23625
√
−7

32

0 33901875
256 −

354375
√
−7

256

y 75
2 + 15

√
−7

2 1 0 1050−
450
√
−7

0 36225
2 +

7875
√
−7

2

0 1252125
4 −

23625
√
−7

4

0

y2 - 0 900−
900
√
−7

0 15750 +

11250
√
7

0 748125
2 −

23625
√
−7

2

0 23506875
4 −

1299375
√
−7

4

y3 525
2 −

1575
√
−7

2

0 −4500 +
22500

√
−7

0 354375−
16875

√
−7

0 8386875
2 −

1299375
√
−7

2

0

y4 0 −31500 +
31500

√
−7

0 528750−
33750

√
−7

0 1535625
2 −

2413125sqrt−7
2

0 178959375
4 +

26578125
√
−7

4

y5 −33075 +
23625

√
−7

0 1228500−
94500

√
−7

0 −5484375−
2413125

√
−7

0 50203125
2 +

12909375
√
−7

2

0

y6 0 2205000−
189000

√
−7

0 −19372500−
5197500

√
7

0 31843125 +

12909375
√
−7

0 285271875
2 −

75684375
√
−7

2

y7 3898125
2 −

354375
√
−7

2

0 −46305000−
10395000

√
−7

0 93318750 +

53156250
√
7

0 1251703125
7 +

75684375
√
−7

0

L = Ω∞(Z+ 1+
√
−11
2 Z) with Ω∞ ≈ 0.157988062436041406847226542091

Θ(0,0)(x, y) 1 x x2 x3 x4 x5 x6 x7

1 0 -56 0 − 17248
5 0 − 664048

5 0 − 127497216
25

y -56 0 -7056 0 -271656 0 − 47811456
5 0

y2 0 -7056 0 -321048 0 − 45638208
5 0 − 2008081152

5

y3 − 17248
5 0 -321048 0 -6914880 0 − 1490848128

5 0

y4 0 -271656 0 -6914880 0 − 1103614848
5 0 −3673875744

y5 − 664048
5 0 − 45638208

5 0 − 1103614848
5 0 − 28258348608

25 0

y6 0 − 47811456
5 0 − 1490848128

5 0 − 28258348608
25 0 − 1133586703872

25

y7 − 127497216
25 0 − 2008081152

5 0 −3673875744 0 − 1133586703872
25 0

6.2 Power series and measure associated

Recall that Ê is the formal group associated with E with respect to the parameter t = −2x/y
and λ(t) denotes the formal logarithm of Ê. We also fixed an embedding ip : Q ↪→ Cp such that

the completion of K in Cp is Kp. Let W be the ring of integers of the completion of the maximal

unramified extension of Qp.

Definition 6.3. We define Θ̂(s, t) to be the formal composition of the Laurent expansion of Θ(z, w) at

the origin with z = λ(s) and w = λ(t)

Θ̂(s, t) = Θ(z, w)|z=λ(s),w=λ(t).

Let z0, w0 ∈ L⊗Q be torsion points whose order n is prime to p. Analogously we define Θ̂(z0,w0)(s, t)

and Θ̂∗
(z0,w0)

(s, t)

Θ̂(z0,w0)(s, t) = Θ(z0,w0)(z, w)|z=λ(s),w=λ(t),

Θ̂∗
(z0,w0)

(s, t) = Θ̂(z0,w0)(s, t)− ⟨w0, z0⟩δz0s−1 − δw0
t−1.

The following theorem will allow us to construct p-adic measure. The assumption of p splitting

prime is fundamental, in fact in the case of p supersingular the coefficients of Θ̂∗
(z0,w0)

are p-

adically unbounded.
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Theorem 6.3. Let z0, w0 ∈ L ⊗ Q be torsion points whose order n is prime to p. Then we have that

Θ̂∗
(z0,w0)

is p-integral.

Θ̂∗
(z0,w0)

(s, t) = Θ̂(z0,w0)(s, t)− ⟨w0, z0⟩δz0s−1 − δw0
t−1 ∈W [[s, t]].

Proof. See [BK10].2.3

Recall that by Prop. 4.2.1 we have an isomorphism of formal groups defined over R̂∞

η : Ê → Ĝm

S 7→ η(t) = Ωpt+ · · ·

which is of the form η(t) = exp(λ(t)Ωp)− 1. We let ι(T ) = Ω−1
p T + · · · to be the inverse power

series of η(t).

Definition 6.4. We let Θ̂∗ι
(z0,w0)

(T1, T2) to be the formal power series defined by

Θ̂∗ι
(z0,w0)

(T1, T2) = Θ̂∗
(z0,w0)

(s, t)|s=ι(T1),t=ι(T2).

Using this power series we then define its measure associated

Definition 6.5. Let z0, w0 ∈ L ⊗ Q−L be torsion points of order prime to p. We define the measure

µz0,w0
on Z2

p to be the measure associated to the power series Θ̂∗ι
(z0,w0)

(T1, T2) by Lemma 5.1.3.

Lemma 6.2.1. For any z0, w0 ∈ (L⊗Q)− L be torsion points of order prime to p we have∫
Z2
p

xk−1yjdµz0,w0
(x, y) = (−1)j+k−1Ω−j−k+1

p (k − 1)!
Ej,k(z0, w0)

Aj

for integers j ≥ 0 and k > 0.

Proof. First of all recall that by Lemma 5.1.5, if µj,k denotes the measure associated with the

power series Dj
1D

k
2 Θ̂

∗ι
(z0,w0)

(T1, T2) we have∫
Z2
p

dµj,k(x, y) =

∫
Z2
p

xkyjdµz0,w0 .

By equation (5.2) we obtain∫
Z2
p

xkyjdµz0,w0
=

∫
Z2
p

(
j

0

)(
k

0

)
dµj,k(x, y) = Dj

1D
k
2 Θ̂

∗ι
(z0,w0)

(T1, T2)|(0,0).

In the proof of Lemma 5.2.2 we proved the following equality

(1 + T1)
d

dT1
f(T1) =

[
(Ωpλ

′(T ))−1 d

dT
f(T )

]
|T=ι(T1),

that implies

Dj
1D

k
2 Θ̂

∗ι
(z0,w0)

(T1, T2)|(0,0) = Ω−j−k
p ∂kz ∂

j
wΩz0,w0(z, w)|(0,0).

By the Laurent expansion of Theorem 6.2 we then conclude∫
Z2
p

xk−1yjdµz0,w0
(x, y) = (−1)j+k−1Ω−j−k+1

p (k − 1)!
Ej,k(z0, w0)

Aj
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Observe that when z0, w0 ∈ L then we cannot calculate directly the interpolation property of

µz0,w0
. due to the factors s−1 and t−1 subtracted in the definition of Θ̂∗

(z0,w0)
(s, t) instead of z−1

and w−1. To deal with this we consider the restriction to Z×
p ×Z×

p . Applying the restriction

given by Lemma 5.1.7 to both variables we obtain that the measure associated with the power

series

Θ̂∗ι
(z0,w0)

(T1, T2)−
1

p

∑
ζp−1

Θ̂∗ι
(z0,w0)

(ζ(1 + T1)− 1, T2)−

−1

p

∑
ζp−1

Θ̂∗ι
(z0,w0)

(T1, ζ(1 + T2)− 1)+

+
1

p2

∑
ζp1−1
ζp2−1

Θ̂∗ι
(z0,w0)

(ζ1(1 + T1)− 1, ζ2(1 + T2)− 1)

is the restriction of the measure µz0,w0
. Furthermore, we can observe that this power series

coincide with the one given by Θ̂ι instead of Θ̂∗ι. Indeed, the poles coming from ι(T1)
−1 and

ι(T2)
−1 cancels out, in particular the terms involving ι(T1)−1 add up as

1

ι(T1)
− 1

p

∑
ζp−1

1

ι(ζ(1 + T1)− 1)
− 1

p

∑
ζp−1

1

ι(T1)
+

1

p2

∑
ζp1−1
ζp2−1

1

ι(ζ1(1 + T1)− 1)
= 0.

We can rewrite the power series associated to the restricted measure as

Θ̂ι(z0,w0)
(T1, T2)−

1

p

∑
ζp−1

Θ̂ι(z0,w0)
(ζ(1 + T1)− 1, T2)−

−1

p

∑
ζp−1

Θ̂ι(z0,w0)
(T1ζ(1 + T2)− 1)+

+
1

p2

∑
ζp1−1
ζp2−1

Θ̂ι(z0,w0)
(ζ1(1 + T1)− 1, ζ2(1 + T2)− 1). (6.8)

Prop. 6.2.1. Let a be an integral ideal ofK prime to p and let v0, w0 be a-torsion points of C /L. Let spn

and tpn be pn-torsion points of the formal group Ê and let vn, wn be elements in L⊗Q that respectively

represents the images of spn and tpn . Let ϵ be an element of OK such that

ϵ ≡ 1 mod pn, ϵ ≡ 0 mod pn.

Then we have

Θ̂ϵv0,ϵw0(s[+]spn , t[+]tpn) = ⟨ϵvn, ϵw0⟩LΘ̂ϵv0+ϵvn,ϵw0+ϵwn(s, t).

Moreover, if ϵ ≡ 1 mod a we have

Θ̂ϵv0,ϵw0
(s[+]spn , t[+]tpn) = ⟨ϵvn, ϵw0⟩L⟨ϵwn, (ϵ− 1)v0⟩LΘ̂v0+ϵvn,w0+ϵwn

(s, t)

Proof. See [BK10].2.20.
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Lemma 6.2.2. Let z0, w0 ∈ L⊗Q be such that az0 and aw0 are in L and Na is prime to p. Then∫
Z×
p ×Z×

p

(1 + T1)
x1(1 + T2)

x2dµ(ϵz0,ϵw0)(x1, x2) =

= [Θϵz0,ϵw0(z, w, L)−Θpϵz0,ϵw0(pz, w, pL)−Θϵz0,pϵw0(z, pw, pL)+

+Θpϵz0,pϵw0
(pz, pw, p2L)

]
|λ(ι(T1)),λ(ι(T2))

where ϵ ∈ OK is such that ϵ ≡ 1 mod p and ϵ ≡ 0 mod p. If in addition ϵ ≡ 0 mod a, then we have∫
Z×
p ×Z×

p

(1 + T1)
x1(1 + T2)

x2dµ(z0,w0)(x1, x2) =

= [Θz0,w0
(z, w, L)−Θpz0,ϵw0

(pz, w, pL)−

− ⟨(ϵ− 1)z0, w0⟩LΘϵz0,pw0(z, pw, pL)+

+⟨(ϵ− 1)z0, w0⟩LΘpϵz0,pϵw0
(pz, pw, p2L)

]
|λ(ι(T1)),λ(ι(T2)).

Proof. Recall that by definition we have

Θ̂ιϵz0,ϵw0
(T1, T2) = Θϵz0,ϵw0

(z, w)|z=λ(ι(T1)),w=λ(ι(T2)).

Then by Prop. 6.1.2 we have∑
ζp−1

Θ̂ιϵz0,ϵw0
(ζ(1 + T1)− 1, T2) =

∑
s1∈Ê[π]

Θ̂ϵz0,ϵw0
(s[+]s1, t) =

=
∑

v1∈p−1L/L

⟨ϵv1, ϵw0⟩LΘ̂ϵv0+ϵv1,ϵw0
(s, t)|s=ι(T1),t=ιT2

=

=
∑

v1∈p−1L/L

⟨ϵv1, ϵw0⟩LΘ̂ϵv0+ϵv1,ϵw0(z, w)|z=λ(ι(T1)),w=λ(ι(T2))

Applying the distribution relation Prop. 6.1.2 we obtain∑
ζp−1

Θ̂ιϵz0,ϵw0
(ζ(1 + T1)− 1, T2) = pΘpϵz0,ϵw0

(pz, w, pL)|z=λ(ι(T1)),w=λ(ι(T2)).

Similarly, we have∑
ζp−1

Θ̂ιϵz0,ϵw0
(T1, ζ(1 + T2)− 1) = Θϵz0,pϵw0

(z, pw, pL)|z=λ(ι(T1)),w=λ(ι(T2)),∑
ζp1−1
ζp2−1

Θ̂ι(z0,w0)
(ζ1(1 + T1)− 1, ζ2(1 + T2)− 1) = Θpϵz0,pϵw0(pz, pw, p

2L)|λ(ι(T1)),λ(ι(T2)).

The first assertion now follows from the fact that the restricted measure is given by (6.8). For

the last assertion see [BK10].3.5.

6.3 Relation to Yager’s p-adic measure

Let φ be a Hecke character of an imaginary quadratic field K with class number 1. Let f be its

conductor. Let Ω∞ be a complex number such that L = Ωf is a period lattice of a Weierstrass
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integral model of E over OK . As usual, let p be a rational prime which splits as (p) = pp in

K coprime with the discriminant −dK . Fix a Weierstrass model of C /L over OK and a p-adic

period Ωp of its formal group.

Definition 6.6. We define the p-adic measure µψ by

µψ(x, y) =
∑

a∈IK(f)/PK(f)

µψ(αaa)Ω∞,0(x,N fy, L),

where αa is any element of a−1 such that αa ≡ 1 mod ×f.

Observe that the definition does not depend on the choice of the representative a and αa. This

is because ψ(α) = α if α ≡ 1 mod ×f.

Recall that we define L∞(ψj+k) to be

L∞(ψ
k+j

, k) =

(
1− ψ(p)k+j

Npj+1

)(
1− ψ(p)k+j

Npk

)(
2π√
dK

)
Ω−(k+j)

∞ L(ψ
k+j

, k).

The following theorem will now establish the connection between Yager’s p-adic measure and

the previously constructed one.

Theorem 6.4. Let j, k be integers such that k > −j ≥ 0. Then we have

1

Ωj+kp

∫
Z×
p ×Z×

p

xk−1yjdµψ(x, y) = (−1)j+k−1(k − 1)!L∞(φk+j , k)

Proof. Let ε ∈ OK such that ε ≡ 1 mod fp and ε ≡ 0 mod p. Then by Lemma 6.2.2 we have∫
Z×
p ×Z×

p

(1 + T1)
x(1 + T2)

ydµψ(αaa)Ω∞,0(x, y) =

=
[
Θψ(αaa)Ω∞,0(z, w, L)−Θpψ(αaa)Ω∞,0(pz, w, pL)−Θϵψ(αaa)Ω∞,0(z, pw, pL)+

+Θpϵψ(αaa)Ω∞,0(pz, pw, p2L)
]
|λ(ι(T1)),λ(ι(T2)).

By the homothety relation (6.4) we have that rescaling by a factor ψ(p) = pψ(p)−1 we obtain

Θpψ(αaa)Ω∞,0(pz, w, pL) = p−1ψ(p)Θψ(αapa)Ω∞,0(ψ(p)z, p
−1ψ(p)w,L).

By Theorem 6.2 we have

∂k−1
z ∂jwΘψ(αapa)Ω∞,0(ψ(p)z, p

−1ψ(p)w,L)|z=0,w=0 = (−1)j+k−1ψ(p)
k+j−1

pj
(j − 1)!

A(L)j
Ej,k(ψ(αaap)Ω∞, 0, pL)

Recall that by Corollary 3.5.1 we have∑
a∈IK(f)/PK(f)

Ej,k(ψ(αaap)Ω∞, 0, pL) = |Ω∞|2jΩ−(j+k)
∞ N f−jL(ψ

j+k
, k).

Since L = Ω∞f, we have

A(L) = N f|Ω∞|
√
dK
2π

and so we conclude∑
a∈IK(f)/PK(f)

∂k−1
z ∂jwΘψ(αapa)Ω∞,0(pz, w, p)L)|z=0,w=0 =

= (−1)j+k−1(j − 1)!

(
2π√
dK

)j
ψ(p)j+k

pj+1

Lf(ψ
j+k

, k)

Ωj+k∞
.
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Similarly, we have ∑
a∈IK(f)/PK(f)

∂k−1
z ∂jwΘϵψ(αapa)Ω∞,0(z, pw, pL)|z=0,w=0 =

= (−1)j+k−1(j − 1)!

(
2π√
dK

)j
ψ(p)j+k

pj+1

Lf(ψ
j+k

, k)

Ωj+k∞

and ∑
a∈IK(f)/PK(f)

∂k−1
z ∂jwΘpϵψ(αapa)Ω∞,0(pz, pw, p

2L)|z=0,w=0 =

= (−1)j+k−1(j − 1)!

(
2π√
dK

)j
ψ(p)j+kψ(p)j+k

pj+k+1

Lf(ψ
j+k

, k)

Ωj+k∞
.

Since ∂S,log = Ωp∂z and ∂T,log = Ωp∂w, the assertion now follows from the definition of µψ and

the equations above.
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Class Field Theory

For this section we mainly refer to [Sch], [Neu99] and [CF10].

Theorem A.1 (Local reciprocity law). Let K a finite extension of Qp. For any L/K finite Galois

extension, the subgroup NL/K(L×) is open in K× and there exists a group isomorphism

rL/K : K×/NL/K(L×)
∼−→ Gal(L/K)ab

such that the following properties are satisfied

i) if L/K is unramified, then rL/K(πF ) = FrobL/K ,

ii) if L′/K ′ is a finite Galois extension with K ⊂ K ′ and L ⊂ L′, the following diagram commutes

K ′×/NL′/K′(L′×) K×/NL/K(L×)

Gal(L′/K ′)ab Gal(L/K)ab

NK′/K

rL′/K′ rL/K

where the bottom horizontal arrow is the morphism induced by the restriction map Gal(L′/K ′)→
Gal(L/K)

iii) if τ : L
∼−→ L′ is an automorphism of valued fields and if K ′ = τ(K), we have a commutative

diagram

K×/NL/K(L×) K
′×/NL′/K′(L

′×)

Gal(L/K)ab Gal(L′/K ′)ab

τ

rL/K rL′/K′

where the bottom horizontal arrow is the isomorphism of groups induced by σ 7→ τστ−1.

Moreover, there is at most one family of isomorphisms (rL/K)L/K satisfying i) and ii).

Consider now L/K a finite abelian extension of number fields. The local reciprocity law allows

us to define a group homomorphism for every place v of K

K×
v → Gal(L/K)

xv 7→ (xv, L/K)
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which is the composite of the following chain of homomorphisms

Kv ↠ K×
v /N(Lw/Kv)(L

×
w)

rLw/Kv−−−−−→ Gal(Lw/Kv) ↪→ Gal(L/K).

We can therefore define a group homomorphism

ArtL/K : A×
K → Gal(L/K)

(xv)v 7→
∏
v

(xv, L/K).

called Artin reciprocity map.

Theorem A.2 (Artin reciprocity map). The Artin reciprocity map ArtL/K induces a group isomor-

phism

ArtL/K : A×
K /K

×NL/K(A×
L )

∼−→ Gal(L/K).

Moreover ArtL/K is the unique continuous group homomorphism from A×
K to Gal(L/K) such that, for

all v unramified in L, we have

ArtL/K(πv) = FrobL/K

where πv = (1, . . . , 1, πv, 1 . . . ) ∈ A×
k is the idele whose all coordinates are 1 excepted the coordinate at

v which is the uniformizer.

Theorem A.3 (Takagi-Chevalley, Existence theorem). The map L 7→ K×K×NL/K(A×
L ) induces a

decreasing bijection between isomorphism classes of finite abelian extensions of K and open subgroup of

finite index containing K× in A×
K .

Theorem A.4. Let m be a modulus for a number field K. We have an exact sequence

1→ O×
K/(O

×
K ∩K

m,1)→ Km/Km,1 → ClmK → ClK → 1 (A.1)

and a canonical isomorphism

Km/Km,1 ∼= {±}#m∞ × (OK/m0)
×. (A.2)

Corollary A.4.1. Let m be a modulus for K. The ray class group ClmK is a finite abelian group whose

cardinality hmK is given by

hmk = hK
φ(m)

[O×
K : O×

K ∩Km,1]
(A.3)

where hK = #ClK and φ(m) = #(Km/Km,1) = φ(m∞)φ(m0), with

φ(m∞) = 2#m∞ , φ(m0) = #(OK/m0)
× = N(m0)

∏
p|m0

(1−N(p)−1).
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Elliptic curves with Complex

Multiplication

For this section, we will mainly refer to Rubin’s article [Rub81]and Silverman’s book [Sil94].

Fix a subfield F of C and an elliptic curve E defined over F .

Definition B.1. We say E has complex multiplication over F if EndF (E) is an order in an imaginary

quadratic field, i.e., if EndF (E) ̸= Z.

We assume from now on thatE has complex multiplication byOK ring of integers of a quadratic

imaginary extension K. There is a unique isomorphism

[·] : OK
∼−→ EndF (E)

such that for any invariant differential ω ∈ ΩE on E we have

[α]∗ω = αω

for all α ∈ OK . For simplicity, we identify EndF (E) with OK . If a ⊆ OK is an integral ideal,

we will write E[a] = ∩α∈a. As usual, consider the associated lattice L ⊆ C and the analytic

morphism

ξ : C /L→ E(C)

Then for every a fractional ideal of K we have that a−1L is a lattice in C and the associated

elliptic curve a∗E = Ea−1L has complex multiplication byOK . Furthermore, with the standard

identification we have that to every α ∈ OK corresponds the morphism ξ(z) 7→ ξ(αz).

Prop. B.0.1. Let E elliptic curve with complex multiplication by OK .

(i) E[a] is the kernel of the natural map E → a ∗ E

(ii) E[a] is a free OK/a-module of rank 1.

Corollary B.0.1. Let E elliptic curve with complex multiplication by OK .
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(i) For all integral ideals a ⊆ OK , the natural map E → a ∗ E has degree NK/Qa and #E[a] =

NK/Qa.

(ii) For all α ∈ OK , the isogeny [α] has degree |NK/Qα|.

Theorem B.1 (Main theorem of complex multiplication). Let a a fractional ideal of K and an ana-

lytic isomorphism

ξ : C /a→ E(C).

Suppose σ ∈ Aut(C /K) and x ∈ A×
K satisfies (x,Kab/K) = σ|Kab . Then there is a unique isomor-

phism ξ′ : C /x−1a→ Eσ(C) such that the following diagram commutes

K/a Etors

K/x−1a Eσtors

x−1

ξ′

ξ

σ (B.1)

where Etors denotes the torsion in E(C) and similarly for Eσtors.

Let H denote the Hilbert class field of K.

Corollary B.1.1. (i) K(j(E)) = H ⊂ F ,

(ii) j(E) is an integer of H .

Corollary B.1.2. There is an elliptic curve defined over H with endomorphism ring OK

Definition B.2. Consider a Weierstrass equation for E over H

y2 = x3 +Ax+B

with A,B ∈ H . Then we define the Weber function for E/H as

h(P ) = h(x, y) =


x if AB ̸= 0,

x2 if B = 0,

x3 if A = 0.

Theorem B.2. Let K imaginary quadratic field, let E be an elliptic curve with complex multiplication

by OK , and let h : E → C be the Weber function for E/H . Let c be an integral ideal of OK . Then the

field

K(j(E), h(E[c])) = H(h(E[c]))

is the ray class field of K modulo c.

Corollary B.2.1. Kab = K(j(E), h(Etors)). If in particular, K has class number 1, K = H , then

Kab = K(Etors).

Theorem B.3. There is a Hecke character

ψ = ψE : A×
F /F

× → C× (B.2)

with the following properties.
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(i) If x ∈ A×
F and y = NF/Kx ∈ A×

K , then

ψ(x)OK = y−1
∞ (yOK).

(ii) If x ∈ A×
F is a finite adele (x∞ = 1) and p is a prime of K, then ψ(x)(NF/Kx)−1

p ∈ O×
Kp

and for

every P ∈ E[p∞]

(x, F ab/F )P = ψ(x)(NF/Kx)
−1
p P.

(iii) If q is a prime of F , then ψ is unramified at q if and only if E has good reduction at q.

Let f = fE denote the conductor of the Hecke character ψE . We can view ψ as a character of

fractional ideals of F prime to f in the usual way.

Corollary B.3.1. As a character on ideals, ψ satisfies the following properties.

(i) If b is an ideal of F prime to f then

ψ(b)OK = NF/Kb.

(ii) If q is a prime of F not dividing f and b is an ideal of OK prime to q, then for every P ∈ E[b] we

have

(q, F (E[b])/F )P = ψ(q)P.

(iii) If q is a prime of F where E has good reduction and q = NF/Qq then ψ(q) ∈ OK reduces modulo

q to the Frobenius endomorphism ψq of Ẽ.

Corollary B.3.2. Suppose E is defined over K, a is an ideal of K prime to 6f, and p is a prime of K not

dividing 6f.

(i) E[af] ⊂ E(K(af)).

(ii) The action of Gal(C /K) on E[a] induces an isomorphism

Gal(K(E[a])/K)
∼−→ (OK/a)×.

(iii) If b|a then the natural map

Gal(K(af)/K(bf))→ Gal(K(E[a])/K(E[b])).

(iv) K(E[apn])/K(E[a]) is totally ramified above p.

(v) If the map O×
K → (O/a)× is injective then K(E[apn])/K(E[a]) is unramified outside of p.
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APPENDIX C

GP/Pari Code

1 EllQI1(d)={

2

3 if(d%4==1, tau=(1+sqrt(d))/2,tau = sqrt(d)); \\ tau generator of ring of integer Z+

tau*Z

4

5 j0 = round(ellj(tau));

6 e = ellfromj(j0);

7 E = ellinit(e);

8 \\ elliptic curve over Q with End_Q(E)=O_K

9 E = ellminimalmodel(E);

10

11 L = ellperiods(E);

12 w1 = ellperiods(E)[1];

13 w2 = ellperiods(E)[2];

14

15 tau = w1/w2;

16 }

17

18

19

20

21 Gk(k,tau)=

22 {

23 V = mfcoefs(mfEk(k),100);

24 Ekpol = truncate(Ser(V));

25 q= exp(2*Pi*tau*I);

26 Ek = subst(Ekpol,x, q);

27 G = Ek*(2*Pi*I)ˆk/(k!)*bernfrac(k);

28 return(G);

29 }

30

31

32 ThetafromL(L,z0,w0,n)=

33 {

34

35 w1 = L[1];

36 w2 = L[2];
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37 A = real((w1*conj(w2)-w2*conj(w1))/(2*Pi*I));

38

39 sigmaL = ellsigma(L); \\ power series of sigma up to precision n

40 trunsigma = truncate(sigmaL); \\ truncation of sigma

41

42 sigmaxy = subst(trunsigma,x,x+y+z0+w0); \\ polynomial approximation of PS of

sigma(x+y)

43 sersigmaxy = sigmaxy+O(xˆn); \\up to precision n in both coefficients

44 polsigmaxy = SertoPol(sersigmaxy,n);

45

46 sigmax = subst(trunsigma,x,x+z0);

47 sigmay = subst(trunsigma,x,x+w0);

48 invsigmax = truncate(sigmaxˆ(-1)+O(xˆn)); \\ polynomial app. inverse power

series of sigma in x

49 invsigmay = truncate(subst(sigmayˆ(-1),x,y)+O(yˆn)); \\ polynomial app. inverse

power series of sigma in y

50

51 s2 = -Gk(2,tau)*w2ˆ(-2); \\Weil chap 6 variation 2

52

53 if(z0 == 0 && w0 == 0, polexpz0w0 = 1, \\series expansion of exp((z*

conj(w0)+w*conj(z0))/(-A))

54 serexpz0w0 = exp((x*conj(w0)+y*conj(z0))/(-A))+O(xˆn); \\up to precision n in

both coefficients

55 polexpz0w0 = SertoPol(serexpz0w0,n);

56 );

57

58 if(z0 == 0 && w0 == 0, s2polexpz0w0 = truncate(exp(-s2*x*y)+O(xˆn)), \\

series expansion of exp((z*conj(w0)+w*conj(z0))/(-A))

59 s2serexpz0w0 = exp(-s2*(x+z0)*(y+w0))+O(xˆn); \\up to precision n in both

coefficients

60 s2polexpz0w0 = SertoPol(s2serexpz0w0,n);

61 );

62

63

64

65 ThetaL = exp(-(z0*conj(w0)/A))*polexpz0w0*s2polexpz0w0*polsigmaxy*invsigmax*

invsigmay;

66 ThetaL = truncate(ThetaL*x*y + O(xˆn)); \\ vector of

coefficients in x translated by 1

67 V1 = Vec(ThetaL);

68 W = Vec(0, #V1);

69 for( i = 1, #V1, W[i] = O(yˆn));

70 V1 = truncate(V1 + W);

71 M0 = matrix(#V1);

72

73 for(i =1, #V1, M0[#V1-i+1,]=Vecrev(V1[i],#V1)); \\ matrix of coefficients of Theta

of dimension 3*n-3

74

75 M = M0[1..n,1..n]; \\ matrix of coefficients of Theta up to xˆn*yˆn

76 }

77

78

79
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80

81 VecEk(L,n,tau)={

82

83 w1 = L[1];

84 w2 = L[2];

85

86 VEk = Vec(0,n);

87

88 for(i=1,n-1, if(i>1 && i%2==0, VEk[i+1]= Gk(i,tau)*w2ˆ(-i)));

89

90 return(VEk);

91

92 }

93

94 \\ Compute theta expansion using Jacobi triple product

95

96 Thetaexptrans(L,z0,n,m)={

97

98 w1 = L[1];

99 w2 = L[2];

100 tau = w1/w2;

101

102 A = real((w1*conj(w2)-w2*conj(w1))/(2*Pi*I));

103

104 q = exp(2*Pi*I*tau);

105 z = exp(2*Pi*I*(x+z0)/w2);

106

107 thetaexp =0;

108 Pq3 = 0;

109

110 for(i = 0, m, Pq3 += (-1)ˆi*(2*i+1)*qˆ(i*(i+1)/2));

111

112 for(j=-m, m, thetaexp += (-1)ˆj*zˆj*qˆ(j*(j+1)/2));

113

114 thetaexp = thetaexp*exp(Pi*I*(x+z0)/w2)/Pq3*w2/(2*Pi*I)+O(xˆn);

115

116 thetaexp = thetaexp*exp(conj(w2)/(2*A*w2)*(x+z0)ˆ2);

117

118 return(thetaexp);

119

120 }

121

122

123

124 SertoPol(f,n)={

125

126 vecf = Vec(f+O(xˆn));

127 W = Vec(0,#vecf);

128 for(i=1, #vecf, W[i] = O(yˆn));

129 polf = Polrev(truncate(vecf+W));

130

131 return(polf);

132 }
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133

134

135

136 ThetaJTP(L,z0,w0,n,m)={

137

138

139 x;

140 y;

141 w1 = L[1];

142 w2 = L[2];

143 tau = w1/w2;

144

145 Thetax = Thetaexptrans(L,z0,n,m);

146 if(z0==0, Thetax = serchop(Thetax,1));

147 Thetay = subst(Thetaexptrans(L,w0,n,m),x,y);

148 if(w0==0, Thetay = serchop(Thetay,1));

149 Thetaxy = Thetaexptrans(L,y+z0+w0,n,m);

150

151 Theta2 = Thetaxy*Thetaxˆ(-1)*Thetayˆ(-1);

152

153 if(z0 == 0 && w0 == 0, polexpz0w0 = 1, \\series expansion of exp((z*

conj(w0)+w*conj(z0))/(-A))

154 serexpz0w0 = exp((x*conj(w0)+y*conj(z0))/(-A))+O(xˆn); \\up to precision n in

both coefficients

155 polexpz0w0 = SertoPol(serexpz0w0,n);

156 );

157

158

159 Thetaz0w0 = exp(-z0*conj(w0)/A)*polexpz0w0*Theta2*x*y+O(xˆn);

160

161 V2 = Vec(truncate(Thetaz0w0));

162 W = Vec(0, #V2);

163 for( i = 1, #V2, W[i] = O(yˆn));

164 V2 = truncate(V2 + W);

165 N0 = matrix(#V2);

166

167 for(i =1, #V2, N0[#V2-i+1,]=Vecrev(V2[i],#V2)); \\ matrix of coefficients of Theta

of dimension 3*n-3

168

169 N = N0[1..n-1,1..n-1]; \\ matrix of coefficients of Theta up to xˆn*yˆn

170

171 return(N);

172 }

173

174

175 NewtonSumsEk(L,d,n,r)={

176

177 w1 = L[1];

178 w2 = L[2];

179 tau = w1/w2;

180

181 Sr = matrix(d+2,r);

182 M = matrix(d+2);
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183

184 for(i=0, n-1,

185 for(j=0, n-1,

186

187 if(gcd(i,j)%n,

188 rho = i*w1+j*w2 ;

189 M = ThetaJTP(L,rho/n,0,d+3,20);

190

191 for(l=1,d+2,

192 for(c=1,r,

193 Sr[l,c]=Sr[l,c]+M[l,2]ˆc)))));

194

195 return(Sr);

196

197 }
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List of Symbols

K quadratic immaginary field

OK ring of integers

−dK discriminant of K

p rational prime

p, q prime ideals

vp normalized p-adic valuation

π generator of p

Kp completion of K at p

Op ring of integers of Kp

a, b,m integral ideals

ωK roots of unity of K

ωf roots of unity ≡ 1 mod f

K(m) Ray class field modulo m

hK class number

hmK Ray class number modulo m

E elliptic curve

f conductor of E

ψ Hecke character of elliptic curve

L period lattice

℘ Weierstrass ℘-function

Eα kernel of endomorphism α

Ê formal group of elliptic curve

Ẽ reduction of elliptic curve mod p

Fm field extension of K generated by

πm+1-torsion points

Kn,m field extension of Fm generated by

πn-torsion points

Φm,ω completion of Fm at ω

Ξn,m,ω completion of Kn,m at prime above ω

F∞ union of Fm

K∞ union of Kn,m

U ′
n,m units of Ξn,m,

Un,m units of Ξn,m, congruent to 1

G∞ Galois group of K∞/K

cα Coleman power series associated to α

gm,b logarithmic derivative of cm,β

σ(z, L) Weierstrass’s σ-function

∆(L) Ramanujan’s ∆-function

A(L) area of lattice L

η(z, L) η-function

θ(z, L) fundamental θ-function

ΘE,a rational function on E with respect to a

Θ(z, a) complex L-ellpitic function with re-

spect to a

Λm(z, a) product of Theta functions over set

of representatives
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LIST OF SYMBOLS

C ′
n,m group of elliptic units

e(µ) elliptic unit associated to map µ

⟨z, w⟩L pairing associated to lattice L

Hk(z, w, s, L) Eisenstein-Kronecker-Lerch se-

ries

H∗
k(z, w, s, L) restricted Eisenstein-Kronecker-

Lerch series

E∗
k(z, L) Eisenstein series

E∗
j,k(z0, w0, L) Eisenstein-Kronecker number

L(ψ, s) L-function associated to ψ

Lm(ψ, s) partial L-function associated to ψ

and m(
x

k

)
binomial coefficient function

fµ power series associated to measure µ

µf measure associated to power series f

Γ
(i1,i2)
f Gamma transform

ω(x) Teichmuller character

⟨x⟩L 1 + pZp part of x

u topological generator of 1 + pZp

Di pdifferential operator (1 + Ti)∂/∂Ti

η isomorphism between Ê and Ĝm

Ωp p-adic period associated to η

(, )n Weil pairing of pn+1-division points of L

L∞(ψk+j , k) scaled L-value associated to

ψ, k, j

G(i1,i2) Yager’s power series that interpolates

L-values

Θ(z, w, L) Kronecker two variable theta func-

tion

Θ(z0,w0)(z, w, L) translated Kronecker two

variable theta function

Θ̂(z0,w0)(s, t) formal composition of Laurent

expansion of theta and logarithm

Θ̂∗
(z0,w0)

(s, t) truncation of Θ̂(s, t)

Θ̂∗ι
(z0,w0)

(s, t) composition of Θ̂∗(s, t) and η−1

µ(z0,w0) measure associated to Θ̂∗ι
(z0,w0)

(s, t)

µψ Bannai Kobayashi measure corresponding

to Yager’s construction
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