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CHAPTER 1

Introduction

This mémoire aims to study the construction of p-adic L-functions attached to a quadratic imag-
inary field with respect to a particular Hecke character. The complex L-functions are a widely
studied object that arise in different branches of Mathematics. It is possible to construct p-adic
measures that interpolate some special L-values in order to create a new arithmetic object that

enable us to study its properties from an algebraic point of view.

T. Kubota and H.W. Leopold [LK64] gave a first construction of p-adic L-function for the Rie-
mann (-function and its twists. They used Kummer’s congruences of Bernoulli numbers B,,
to interpolate particular negative values of the Riemann ¢ function. Later, K. Iwasawa [Iwa69]
discovered that the Bernoulli numbers and their properties arise from the arithmetic of towers
of cyclotomic fields. Analogously to the previous construction, Manin and Vishik [VM74] and
Katz [Kat76] constructed p-adic L functions which interpolates special values of Hecke L-series
associated with a quadratic imaginary field K, in which p-splits. It happens that special values
of Eisenstein series attached to elliptic curves with complex multiplication interpolate the val-
ues of L-functions in the same way as Bernoulli numbers do for the Riemann ¢ function. Coates
and Wiles described in two fundamental papers [CW77], [CW78] a norm-coherent sequence of
elliptic units encoding the Eisenstein numbers properties and involving tower extensions of
K with ray class fields generated by torsion points of the elliptic curve associated to K. This
approach has been furtherly developed by R. Yager [Yag82] for class number 1 and E. de Shalit

[DS87] for the general construction. In this paper we will closely follow Yager’s construction.

More concretely, consider K a quadratic imaginary field and O its ring of integers. We will
always assume that K has class number 1. We can then consider an elliptic curve E defined
over K with complex multiplication by Og. By the theory of complex multiplication, there
exists a Hecke character 1) on K attached to FE that encodes the arithmetic structure of E. Let
p # 2,3 be a rational prime such that £ has good reduction above it. We will assume p splits in

K, (p) = pp. Fix a Weierstrass model for E
y? =42® — gow — g3

such that g2, g3 € Ok and its discriminant is prime to p. Let L C C the lattice associated to the
model, then there exists 0, € C such that L = Q.,Ok. For each pair (i1,i2) € (Z /(p — 1) Z)?,
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Katz has proved the existence of a power series G("%2) with coefficients in the ring of integers
A of a certain unramified extension of the completion of K at p with the following interpolation

property. If 0 < j < k, we write

—ktj

Loo(¥" " k) =(1 =9 (p)*H (Np) ) (1 = 0 (p*)*+ (Np*)7F)

27\’ Pkt

— ) QLW Lk
< Vdg ) ( )

where df is the discriminant of K" and we fix a generator u of (1+pZ,)*. Then for each (k1, k2)

pair of integers satisfying k1 > —ko > 0 and (k1, k2) = (i1,42) mod (p — 1) we have

Gl (uh — 1,ub? = 1) = (ky — DIQE M L (37"

) kl)

To construct such a power series we will study the properties of a rational function on £ defined
by

Opa=a 2AE)N T (& —a(P)
PEE.—O

and in particular of some special values at torsion points called elliptic units. These elements
correspond to a generalization of the cyclotomic units in Q, and live in ray class field extensions
of K. These extensions form a tower and they are generated by the coordinate of the torsion
points of the elliptic curve E. The Lubin-Tate theory in Chapter 2 describes the properties
of these tower extensions. The theta function comes to play a role in the interpolation of L-

functions because the Laurent expansion has coefficients of the form

k
(ci) logO(z,a) = (=1)F112(k — D)!(NaEy(z, L) — Ex(z,a 1L)).

where £}, are the Eisenstein-Kronecker functions and they have the property

Er(p, L) = p ¥ () L (@, )

with p an m-division point. With all these elements we can eventually construct a power series

G(i1+i2) interpolating the L function attached to K and of character ).

In the last chapter we will study the properties of a two variables theta function © . ., (z,w)
that encodes the information of the Eisentsein-Kronecker series allowing us to reobtain the
construction of Yager’s interpolation from a different point of view. In particular, the Laurent

expansion of this function is of the form

_ _ E; k+1(20, wo) ;
O29,wo (2, W) = (W, 20) 0202 T+ Ouwy W 1+ kz;o(_l)k—ijj!ka].
J>

In this Mémoire we used this property to actually compute the Eisenstein numbers at differ-
ent tosion points, and recognize them as algebraic numbers. All the computations have been
developed with GP/PARL
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1.1 Background and notation

1.1.1 Quadratic imaginary fields

Let K quadratic imaginary field with O ring of integers, then there exists d € Q such that
K = Q(v/d). We denote by —d the discriminant of K and we have

difd=1 mod4
—dg = (1.1)

4d otherwise.

By Dirichlet’s unit theorem, we have that O = wx where wg is the set of roots of unity in K.
Since K/ Q is quadratic, then wx = 2,4 or 6. We fix an embedding i : Q — C.

Let f,g C Ox be two integral ideals, then we denote w; the number of roots of unity congruent
tol mod f. The ray class field modulo f is denoted by K (f) and we define K (fg*) by

K(jg>) = | K(ja").

n>0

We denote by H = K (1) the Hilbert class field. By Corollary we have

[K(g) : H] = hi/hk = %#(OK/G)X- (1.2)

1.1.2 Elliptic curve associated to K

Consider K to be an imaginary quadratic field with class number 1, then K coincides with the
Hilbert class field H = K and Ok is a PID. By Corollary [B.1.2} there exists an elliptic curve E
defined over K with complex multiplication by O . Denote by S the finite set consisting of 2,3
and the rational primes ¢ such that £ has bad reduction at least one prime above gq. We fix a
Weierstrass model for £

y? =4a® — gow — g3 (1.3)

where g9, g3 € Ok and the discriminant of is divisible only by primes of K lying above
primes in S. This is possible because K has class number 1 (See [Sil94].VIIL.8). Let p(z) the
Weierstrass function associated with and L the period lattice of p(z). As usual, we have
an analytic morphism

£:C/L— E(C)

with £(z) = (p(2), ©'(2)). We can identify Ok with the endomorphism ring in such a way that
the endomorphism corresponding to a € Ok is given by £(2) — {(az). Choose an element €2,
of the period lattice L such that

L =Q,0k.

Let ) be the Hecke character associated to E over K defined by Theorem B.3|and fix a generator
foff=(f). We fix a prime p of K lying above a rational prime p such that p ¢ S and p is of

degree 1. Hence p has good reduction, it is coprime to 6f and we will write

(p) = pb.
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Put 7w = ¢(p) and 7 = ¢(p), and observe that from Corollary (i) they are generators of the
respective ideals

p=(m), p=m@.
We will denote E,, to be the kernel of the endomorphism « of E and let

Erpoe = | ) Erntr, Bz = | Erwsr.

n>0 m>0
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Elliptic tower field

Cyclotomic extensions of Q, have been broadly studied and their properties have been remark-
ably important for the ideas behind Class Field Theory and p-adic interpolation of {-function.
In this chapter, we will study how the properties of this tower field extension can come from
a more general construction called Lubin-Tate groups. In particular, we will use this theory
to study the extension of the quadratic imaginary field K with torsion points of the elliptic
curve E attached to it. These towers will be the setting in which the theory of the elliptic units

develops.

2.1 Formal groups

First of all, we recall the basic properties of the formal groups and their formalism. The formal
groups can give the structure of a group to complete algebras over a fixed ring, this allows us

to study the properties of the power series instead of the single group.

2.1.1 Definitions and first properties

Let R be a commutative ring with identity.

Definition 2.1. A formal group F defined over R is a power series F(X,Y') € R[[X, Y]] satisfying:
(i) F(X,Y) =X + Y+(terms of degree > 2);
(i) F(X,F(Y,Z)) = F(F(X,Y), Z) (associativity);

(iii) F(X,Y) = F(Y, X) (commutativity);

(iv) there is a unique power series o(T') € R[[T]] such that F(T,(T)) = 0 (inverse);
(v) F(X,0)=Xand F(0,Y) =Y.

We call F(X,Y) the formal group law of F.
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Definition 2.2. The formal additive group, denoted G, is given by
F(X,Y)=X+Y.
The formal multiplicative group, denoted G, is given by

FX,Y)=X+4Y+XY =(1+X)14Y)-1

Let A be an R-algebra and a an ideal such that A is complete and separated in its a-adic topol-
ogy. Thenif f,g € a, F(f, g) and ¢(f) converge to elements of a, denoted respectively by f[+]g
and [—]f. Observe that with [+] as addition a becomes an abelian group, we write F(a) to

distinguish it from the ordinary addition on a.

Definition 2.3. Let (F, F) and (G, G) be formal power groups defined over R. A homomorphism from
F to G defined over R is a power series with no constant term f(T) € R][[T]] satisfying

fF(X,Y)) = G(F(X), f(Y)).

F and G are isomorphic over R if there are homomorphism f : F — Gand g : G — F defined over R
with

fl9(T)) = g(f(T)) =T.
The collection Hom(F, G) of such homomorphism forms a group with respect to the addition law of G

and End(F') becomes a ring under composition as a product.

Theorem 2.1. Let R be a domain of characteristic 0, and f € Hom(F, F"). Then F(T) = aT+(higher

terms) induces an injective group homomorphism
Hom(F,F') -+ R
fr=f0)=a
Proof. See [Haz78] 20.1. O
For a € R we denote [a]p p € Hom(F, F') and [a]r € End(F') the unique elements such that
(4], (0) = [a]p (0) = a.
Definition 2.4. An invariant differential on F /R is a differential form w
w(T) = P(T)dT € R[[T]]dT
satisfying
wo F(T,S) =w(T).

In other words, satisfying
P(F(T,S))Fx(T,S) = P(T),

where F'x (T, S) is the partial derivative of F with respect to the first variable. An invariant differential

as above is said to be normalized if P(0) = 1.
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Prop. 2.1.1. Let F/R be a formal group. There exists a unique normalized invariant differential on
F /R, given by the formula
w = Fx(0,T)"dT.

Every invariant differential on F /R is of the form aw for some a € R.

Proof. See [Sil09] 4.2 O

Definition 2.5. Let R be a ring of characteristic 0, K = R ® Q, and F /R be a formal group. Let
w(T)=1+aT+cT?+csT? +---)dT

be the normalized invariant differential on F/R. The formal logarithm A\r € K[[T]] of F/R is the

power series

/\;(T):/w:T+C—21T2+C—;T3+--~eK[[T]}.

The formal exponential of F /R is the unique power series € w(T') € K[[TY] satisfying

Ar(T)oer(T) =er(T) o Ap(T) =T.

Observe that by definition we have that \'(T) € R[[T]]* has coefficients in R.
Prop. 2.1.2. Let F/R be a formal group with char(R) = 0. Then

Ar: F = G,
is an isomorphism of formal groups over K = R @ Q with inverse € r.

Proof. See [S1l09] 5.2. O

We conclude with the definition of height for rings of finite characteristic.

Definition 2.6. Let F' be a formal group over a field of characteristic p > 0. Then [p|p(T) =
T[+] -+ [+]T (p times) is a power series in X7 with ¢ = p" for some h > 0. The largest possible h
is called the height of F. If [p]r = 0, then F is said to be of infinite height.

2.1.2 Lubin-Tate groups

Let & be a finite extension of Q,, let O and p be its valuation ring and maximal ideal. Let the
residue field O/p have g elements. Lubin-Tate [LT65] introduced an extremely useful class of
formal groups defined over O that possess a special endomorphism that lifts the Frobenius
substitution X — X9

Definition 2.7. Let F denote the set of power series f(T') € O[[T]] which satisfy the two conditions
(i) f(T)=7T mod deg?2;

(ii) f(T)=T? mod p;



CHAPTER 2: ELLIPTIC TOWER FIELD

where  is a uniformizer of O. The simplest choice for an element f € F is f(T) = nT + T1.

Lemma 2.1.1. Let f(T), g(T) be elements of Fr, and let L(X1, ..., X,) = Y., a;X; be a linear form
with coefficients in O . Then there exists a unique series F'(Xq,...,X,,) € O[[Xa,...,X,]] such that

(i) F(Xy1,...,Xn) = L(Xy,...,X,) mod deg2,
(i) f(F(X1,...,X0)) = F(g(X1,...,9(Xn))).
Proof. See [LT65]. O

Definition 2.8. Foreach f € F, welet Fy(X,Y") be the series associated to the linear form L = X +Y
in Lemma In particular, Fy satisfies the following properties

(i) Fr(X,Y)=X+Y mod deg2;
(i) f(Fr(X,Y)) = Fr(f(X), f(Y)).

Foreacha € O,and f, g € Fr welet [as,4(T) to be the series associated to the linear form L = aX in
Lemma In particular, [a),4 satisfies the following properties

(@) [a]fq¢(T) =aT mod deg2;
(i) f([alz.o(T)) = [als.q(g(T)).
The following theorem will justify the notation.

Theorem 2.2. For series f,g, h € F and elements a,b € O, the following identities hold:
(@) Fr(X, Fy (Y, 2)) = Fy(Ff(X,Y), Z);
(i) Fr(X,Y) = Fp(Y, X);

(iil) Fy([alyg(X), [alf.g(Y)) = laly.q(Fy(X,Y));

(iv) [alsg([blg.n(T)) = [ab] .0 (T);
(V) la+0l.(T) = Fy([alf4(T), [bl1.4(T));

Vi) [7]f(T) = f(T),  [(T)=T.

In particular, for any f € F. we associate a formal group Fy called Lubin-Tate group for which
[ is an endomorphism. Analogously, the series [a]s , coincides with the homomorphism [a]r, F, €

Hom/(Fy, Fy) previously defined in Theorem|2.1
Proof. Straightforward application of unicity property in Lemma[2.1.1] O

We can observe that for every f,g € Fx, the formal groups Fy and Fj are canonically isomor-
phic over O through [1]; 4. By this characterization, a formal group over O is in this isomor-
phism class if and only if it has an endomorphism reducing mod = to the Frobenius T" +— 19,

whose derivative at the origin is 7.
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Now observe that for each H algebraic extension of k£ with my maximal ideal in the ring of

integers of H, the set my has an O-module structure defined by

.13—|—y=Ff($,y)
oz = ol (2)

for every z,y € my and every a € O. Consider k the algebraic closure of k, then my has the

structure of an O-module denoted by my, ;.

Definition 2.9. For each f € Fr and each integer m > 1 we let Ayp,, denote the O-submodule of my;
consisting of elements X such that
[T A =0.

The following lemma will allow us to remove the dependence of f € Fy.

Lemma 2.1.2. The field extension k(A )/ k is a totally ramified Galois extension and it is independent
of the choice f € Fy.

Proof. Since the formal groups F, F; are canonically isomorphism, we have A € Ay, if and
only if [1]4 r(A) € Ay . By completeness of field extension, we deduce k(Ay,,) and k(Ag.m,)
coincides. We can then consider f to be 771"+ T9. Clearly, k(A ¢,,) is the splitting field of ™ (T")

and then it is Galois. Furthermore, observe that k(A ,,) contains the roots of the polynomial
[ﬂ-m]f(T) = fm(T) = x7" + e mT

and hence those of the polynomial

OlT) = hot s = Loy = (MO

which is of degree ¢™ — ¢™ ! and is irreducible over k by Eisenstein’s criterion. We conclude
k(A¢ m)/k is totally ramified. O

We denote k(A¢,,) by Hy ., /k and its Galois group by G .. We let

Af = U Af,ma Hﬂ. = ,ZC(Af), Gﬂ. = @Gmm-

m>1
Theorem 2.3. Let  be a prime element of O and let f € F,. The following assertions hold
(1) the O-module my s divisible;
(ii) for each m, the O-module Ay ,, is isomorphic to O /p™;
(iii) the O-module Ay is isomorphic to k/O;
(iv) foreach T € G there exists a unique unit w € O such that for every A\ € Ay we have
A" = ul (V)

(V) the map T — w is an isomorphism of G onto O under which the quotients G , of G corre-
spond to the quotients O* /(1 + 7™ O) of O;
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(vi) for each m > 1 and for each generator A, € A, the element m is the norm of —\, for the

extension Hy p, /k.

Proof. In view of the isomorphism [1]; ,, we may suppose f(T') = 7T 4 T1.

(i)

(i)

(iii)

(iv)

Let s € my;, we want to show that for each o € O there exists r € my such that [o]r = 5. We
can write a = un™ with u € O and m positive integer. By[2.2} we have [a] = [u] o [1]™,

and then we just need to prove the theorem for a = w. Consider the polynomial P,(T") =
T? + T — r and observe that since r € my then all the roots of P,(T') are in m. Let t € my-

be a solution of P,(T") = 0, we obtain
[7lt = f(t) =tI+nt=r.
We conclude my; is divisible.

The O-module A1, which consists of the roots of the equation f(T') = T9 4+ «T = 0, has
q elements since f(T') is coprime with f/(T"). Therefore, A ; is a one-dimensional vector

space over the residue field O/p. For the general case observe that we have
[ p(T) = f™(T) = X7+ +7"T

and hence the polynomial

Oo(T) = i = L = ()

is of degree ¢™ — ¢™~! and is irreducible over k by Eisenstein’s criterion. We deduce Ay,

consists of ¢ zeroes of [7™](T"). Now if A, € Af,, — Af 1, then

O — A,

ar—a-A,

is a homomorphism of O-modules with kernel 7™ O. It induces a bijective homomorphism

O/n"O — A,, because both sides are of order ¢".
Follows from the previous point observing we have a compatible sequence

l)Af,g ﬂ>Af’2 ﬂ)Af’l — 0.

An automorphism 7 € G, induces an automorphism of the O-module A;. Indeed, if
X € Ay, then [7"](A) = 0 and so 7([7"](A)) = 0. Since [7"](T") has coefficients in O we

deduce
([x"J(N)" = ["](A") =0

and then 7(\) € Ay . By the previous point, we have A; = k/0O, and for this module over
a complete valuation ring O, the only automorphism of A are those of the form A — [u]A

foru € O*.

10
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v) From the fact that A generates H,, we deduce that the map 7 — u is injective. More
/8 p J

precisely, the unit v is congruent to 1 mod 7™O i.e. multiplication by v is identity on

(O/p™) = Ay, if and only if 7 is identity on H, ,,, = k(A ., ). Observe that H, ,, contains

the roots of the polynomial
[Wm]f(T) = fm(T) = x7" R I

and hence those of the polynomial

@ (T) = f{;mgr{%) - f(ffn:n_l (%)) = (fm_l(T))q_l +m

which is of degree ¢™ — ¢™~! and is irreducible over k by Eisenstein’s criterion. Thus the
order of G ,, is divided by ¢™ — ¢™~!, that is the order of O* /(1+p™) and the surjectivity

follows. Passing to the inverse limit over m, we obtain G, = U because both groups are

compact.

(vi) If A\, is a root of the Eisenstein polynomial ®,,,(7") then we have H ,, = k(\;,). In fact by
the previous points every other element in Ay ,, is of the form [a](),,) for a certain a € O.

Since the Eisenstein polynomial is
@, (T) = (f"HT)* 4
we deduce — is the norm of A, for the extension H; ,,,/k.

O

Let T be the maximal unramified extension of k, and let o be the Frobenius automorphism
of T over k. Since H ,, is the splitting field of an Eisenstein polynomial, we deduce H is
totally ramified over k. In particular, H, is linearly disjoint from T over k, and the Galois group
Gal(H,T/k) is the product of G, = G(H/k) and Gal(T'/k).

Lemma 2.1.3. For each prime element m € O, there exists an homomorphism
ra kX — Gal(H,T/k)
such that for an arbitrary a = ur™ € k with v € O* we have
(i) rr(a)=0™onT;

(i) N=(@ = [u=1¢(N) for A € Ay.

Proof. We define for each unit u € O*, r(u) to be the identity on T, and on H, the reciprocal
77! of the element 7 € G, corresponding to u. By the previous theorem, we have that this
map is a homomorphism r, : O* — Gal(H,T/k). We extend this map setting r,(7) to be the
identity on H, and the Frobenius automorphism o on T'. The properties (i) and (ii) are clearly

verified. O

Theorem 2.4. The field H,T and the homomorphism r, are independent of .

11
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Proof. See [LT65] Theorem 3. O

Theorem 2.5. For the field H, ,,/k of m"-division points and for a = ur"*(®) € kX, u € O we have

"0 (@) (N) = (@, He o /R)(N) = [u™"] (V)

forevery X € Ay, and vy . reciprocity map.

Proof. See [Neu99].V.5. Theorem 5.5. O

Corollary 2.5.1. The field H. ,,/k of n™-division points is the class field relative to the group () x (14
7" 0) C K*.

Proof. For a = un*() we have the following chain of equivalences

a € Ny w(HY,) < (a,Hrp/k) =1 <= [u"]s(A) = Aorall A € Ay,

= utel+1"0 <= ac (n)x (1+7"0).

Corollary 2.5.2. The composite H, T is the maximal abelian extension of k.

Proof. Let L/k be a finite abelian extension. Then we have n/ € Ny, (L*) for a suitable f.
Since Ny, (L*) is open in k> and since the (1 4 7" O) form a basis of neighborhoods of 1, we
have (7/) x (1 4+ 7"0) C Ny ,(L*) for a suitable n. Hence L is contained in the class field of
the group

() x (14 770) € Nyju(L¥) = ((m) x (1+7°0)) 1 ((x7) x 0%).

The class field of (7) x (1 + 7"O) is Hr, by the previous corollary, while the class field of

(/) x O* is the unramified extension T of degree f. It follows that

LCH,,T; C H,T C k.

2.2 Tower of fields

In this section, we will apply the results of Lubin-Tate theory to K quadratic imaginary ex-
tension. In particular, considering E the elliptic curve associated, we can consider its formal
group defined over a completion of K. This structure will correspond exactly to the Lubin-Tate
setting and it will allow us to study properly the tower field extension arising from K adjoint

with p-torsion points.

12
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2.21 Formal group of an elliptic curve

Definition 2.10. Let E be an elliptic curve given by a Weierstrass equation with coefficients in R
localization of O at p. The formal group associated with E, denoted E, is given by the formal power
series associated with the group law on E of parameter t = —2x/y = —2p(2)/¢’(2) = (2).

Observe that E is defined over R but we consider it over its completion Oy, in particular we

have formal power series expansions
r=1t2a(t), y=—-2t"3a(t)

where a(t) has coefficients in O, and constant term equal to 1. Recall that from the theory of
elliptic curves, there exists a translation invariant differential wg = dx/2y. This in particular
induces a formal invariant differential on £ (See [Sil09] 1V). We can then define the formal

logarithm A of E that induces an isomorphism between Eand G,
N E @a

according to Prop. In particular from the relation t = —2z/y = —2p(2)/¢'(z) = £(z), we
can view z as being a parameter of the formal additive group G, and then ¢(z) is the exponential
map of E. Furthermore observe that every isogeny [a] of E for o« € Ok induces a formal

endomorphism
[a] : E— E
Lemma 2.2.1. For every o € O, we have

[a](t) = at mod deg2.

Proof. By definition of the invariant differential we have w([a](P)) = aw(P), in particular we

obtain
d(z([o] (1)) _  dz(t)
2y([e] (1)) 2y(t)
Using the definition of z(t) and y(t), the right-hand side is (a + O(t))dt and the left-hand side
is ([a]'(0) 4+ O(¢))dt. This completes the proof. O

From the isomorphism ) we deduce

A[a](#)) = aA(®).

We write E for the reduction of E modulo p. Recall the notation of the following subsets of
E(Ky)

Eo(K,) ={P € E(K,): P € E,.(O/p)};
E\(K,)={Pc E(K,): P=0}.

We have the following standard results.

13



CHAPTER 2: ELLIPTIC TOWER FIELD

Prop. 2.2.1. There is an exact sequence of abelian groups
0= Ey(Ky) = Eo(Kp) = Ens(O/p) =0

where the right-hand map is the reduction modulo .

Proof. See [Sil09] VII.2.1. O

Prop. 2.2.2. Let E/K, be given by a minimal Weierstrass equation, let E/R be the formal group

associated to E. Then there is an isomorphism

E(p) = Ei(Ky)

Proof. See [Sil09] VIL.2.2. O

Theorem 2.6. E is a Lubin-Tate group over K,. It is of height 1 if p splits in K/ Q and of height 2 if p

is inert or ramified.

Proof. Let ¢ the Frobenius automorphism. The isogeny ¢ (p) : E — E¥ associated to p, induces

a homomorphism of formal groups

—

Y(p) -

—E

Dj>

which is of the form

Yp)(T) =T+ €Oy
Y(p)(T)=T? mod pO,

with ¢ = Np. Indeed, by Corollary (iii) we have that 1(p) reduces modulo p to the Frobe-
nius automorphism ¢, of E which corresponds to the formal endomorphism 7. Since the
formal group E has an endomorphism of the form of definition then by Theorem we

—

conclude E is a Lubin-Tate group. Observe that by Theoremwe have 1 (p) coincide with the

endomorphism [r]. O

The following lemma uses the theory just encountered to deduce properties about the order
of coordinate functions of E. It will be very useful later in the study of the theory of Theta

functions.

Lemma 2.2.2. Let b, ¢ be non trivial coprime ideals of Og and P € Ey, Q € E. primitive torsion

points in E(K) Fix an extension of the p-adic valuation v, to K normalized to v,(p) = 1.
(i) Ifn > 0and b = p" then vy (z(P)) = —2/(¢" — ¢" ).
(ii) If b is not a power of p then v, (x(P)) > 0.

(iii) Ifp 1 be then vy (z(P) — z(Q)) = 0.

14
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Proof. (i) Suppose b = p™ with n > 1. Let E be the formal group over O K, Let ™ = ¢ (p), by

(if)

(iii)

the previous theorem, we have
[7](T) =7T mod deg?2
[7](T) =T9 mod pO,.
Define f(T') € Ok, to be the power series

_ D) _ W)
0= iy =

and then we have

f(My=n mod T
J@)y =T

Thus, by Weierstrass preparation theorem

where e(T') is an Eisenstein polynomial of degree ¢" — ¢"~! and u(x) € O[[T]]*. By Prop
2.2.2lwe have E,» C E1(K,), so we get for P € E,x that z = —x(P) /y(P) is a root of f(T)

and hence of e(T),
vp(2(P)/y(P)) = (¢" —¢" 7).

Since for every (z(P),y(P)) € E1(K,) we have 3v,(z(P)) = 2v,(y(P)), then we conclude
vp(x(P)) = =2/(¢" — ¢" 7).

If b is not a power of p then by Prop. we have P ¢ E;(K,). Hence we conclude
vp(a(P)) > 0.

Let P, Q the reductions modulo p of P and Q. Then we have
vp(2(P) — 2(Q)) > 0 = z(P) = 2(Q) += P = +Q + P+ Q € F1(K,).

Since b, ¢ are coprime, then the order of P & () is not a power of p. So again, by Prop.
we obtain P + Q & E(K,).

O

We now focus on the case in which p is a split prime and the Lubin Tate group E is of height 1.

By Lemma there is a unique formal. group £ defined over O, such that the endomorphism

[7] of £ is given by the power series [7](w) = 7w + wP. Moreover, by Theorem the formal

group £ is canonically isomorphic to £ over O,. Denote &+ the kernel of the endomorphism
[7"*1] of £. Then we can rewrite Lemma and Theorem 22.3]as follows.

Theorem 2.7. For each n > 0, Ky (E n+1) = Ky(Exn+1) is a totally ramified extension of degree

p™(p — 1). If uy, is a generator of E nv1, then its norm is equal to —m. In particular, u, is a local

parameter for K,(E n+1). Furthermore, we have

15



CHAPTER 2: ELLIPTIC TOWER FIELD

i) the Op-module En is isomorphic to O, /p™,
ii) the Oy-module E - is isomorphic to K, /O,,
ili) Gal(Ky(Exn)/Ky) is isomorphic to Oy /(1 + n"O,) and Gal(Ky(Er~)/K,) is isomorphic to

05

2.2.2 Ray class fields and extensions with torsion points

Lemma 2.2.3. Let f = (f) be the conductor of the Hecke character ) of E, and let E be the group of
f-division points on E. Then the field K (Ey) coincides with the ray class field of K modulo §.

Proof. By Theorem we have that K(f) = K(h(Ey)) C K(Ef). Let now Ay be the idele

group of K, and let U(f) be the subgroup of A corresponding to the ray class field modulo §.
Let £(7) = (p(7), ¢’ (7)) be an arbitrary f-division point on E. Let z € U(f) with 2o, = 1. We
must show that the Artin symbol (z, K®/K) of z fixes £(7). By Theorem (ii) we have

() @K = ¢(y(x)7).

But, as f is the conductor of ¢ and = € U(f) with 2o, = 1, we have 1(x) = 1. Hence, (7, K% /K)
fixes £(7) for any = € U(f) that completes the proof of the lemma. O

Lemma 2.2.4. For each integer n > 0, the conductor of F,, = K(Ezn+1) over K is f, = fﬁ"+1.
Moreover, the ray class field K (f,) modulo f, is the compositum of F,, and H = K(Ey),and F,, " H =
K.

K(fx)
F / \K(E
N

Proof. See [CW77] Lemma 4. O

[/])

We introduce now two important field extensions that will be largely used in the rest of the

mémoire.

Definition 2.11. For each pair of integers m,n > 0 we define

Fp = K(Bani1),
Kn,m == Fm(Eﬂ-n).

Prop. 2.2.3. With the previous notation we have the following properties.

(i) The extension F,,/K is unramified at p.

(i) The extension K, ,,/Fy, is totally ramified at the primes above .

16
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Proof. (i) By Lemma we have that F),, is contained in the ray class field of X modulo

fp™ 1. In particular, F, is unramified at p.

(if) First of all notice that we can reduce to study the extension locally. Let w a prime of F},
lying above p.
Kn,m,w =F, s

mw(Ern)
") — \ F,
\ KP /

By Theorem[2.3|applied to the elliptic formal group, we have that the extension K, (E»)/K,

is the splitting field of an Eisenstein polynomial of the form

Ky(Ex

XP TN Loy

Since F),,/K is unramified we deduce that the polynomial is Eisenstein over F}, and then

the extension F,, ., (Ern)/Fp, ., is totally ramified generated by the same polynomial.
O
The following lemma gives us the decomposition of p in the previous extensions.

Lemma 2.2.5. Let 1, be the number of primes of F,, lying above p. Then r, is given by the index of

the subgroup generated by 7 in (Ox /7™ 1) *. In particular, there exists an integer M such that

rop™  form < M

ropM  form > M.

Proof. First of all, observe that by Corollary (ii) we have
Gal(F,/K) = (Og /7™,

By Corollary (i), we have that (p, F;,/ K) acts on Egm+1 by multiplication by 7. In partic-

ular, we have that in the previous isomorphism
(p, Frn/ K) = .

By the previous proposition, p is unramified in F;,, and then the number of primes lying above
p is given by the index of (p, F,,/K) in Gal(F,,/K) and then of 7 in (O /7™*1)*. Since
Y&n(@ K/T") = Ly = py x (14 pZy,) with p,, p-roots of unity, we have that 7 has index rop™ for
a certain M > 0. O

We then choose and fix pj; prime of Fi lying above p and let p,,, denote the unique prime of

F,, lying above or below p;. In this way, we have fixed our choice of extensions in the tower

17
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field. Since K, ,, over F,, is totally ramified by the previous Lemma, we write p,, ,, for the

unique prime of K, ,, lying above p,,.

(Kpa15 Pn,01)

\

(Knmupn,m) FZ\/Iyp]M)

\(
/

(Frms Pm)

/

If w is any prime of F},, lying above p, we let =, ,,, ., be the completion of K, ,, at the unique
prime above w, and we let ¢, ., denote the completion of F;,, at w. We always view our global
fields equipped with embeddings into their completions. We write R, ., for the ring of integers

of ®,, ., and we use w for the maximal ideal of R, ...

—

=)
—n,m,w

For simplicity, we shall omit the subscript for the prime when referring to the completions at or
above p,, as previously fixed. Let K, be the completion of K at p, and we shall identify its ring
of integers O, with Z,. We also define the following fields

Ky = U Kn,ma Fyo = U Frn, ®x= U D,y
n,m>0 m>0 m>0
Let ¢ denote the Artin symbol (p, Fio / K) for the extension F,, over K. By the previous Lemma,
we have F, is unramified over K, this implies that ¢ induces the Frobenius automorphism for

the extension @ /K.

We then define the rings

Enm =[Enmew: Pm =] Pmw: R =][Rmw
where the product is taken over the set of primes w of F,, lying above p. The Galois group
G = Gul(K/K) acts naturally on these rings as follows. Let (o, x)x be a Cauchy sequence
of elements of K, ., (or Fy;,) which converge to o, in =, 1, «, (Or @4y, ). Then the w? component
of (ay,)? is the limit of the Cauchy sequence (af, ) in =, 1, we (OF @4, 7). We embed K, ., and
F,, in these rings via the diagonal map. The usual norm and trace maps on E,, 1, @, Kim,

and F,, as well as the Galois action, all commute with these embeddings.

We denote by Uy, ,, , the units of =,, ,,, ., and by U,, ., the subgroup consisting of those units

which are congruent to 1 modulo the maximal ideal. We then define

! _ / _
Un,m - H Un,m,w? Un,m - H Un,m,w
w w

18
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where the product is taken over the set of primes w of F,, lying above p. Furthermore, we

introduce the multiplicative groups
Uéo ZI'LHU;Lm, Uso :@Un,m

where the projective limit is taken with respect to the norm maps on the Z,, ,,,. We endow Uy

with its natural structure as a Z,[G]-module.

2.2.3 Action of G, and structure of Z,[A]-module
We denote G, the Galois group of K, /K. From the theory of Lubin-Tate groups we deduce
the following properties of the action of G .
Lemma 2.2.6. The action of G on Ere and Ez- induces two characters
kliGm%Z;, k2Goo_>Z;

with the property that for 0 € G and o € O such that

u’ = aqu

forall w € Exm+1 then ky (o) is given by

—m+1

ky(c) =a mod p™T, ke(o)=a@ mod pmt?

where we have used the identification of Z,, with O,,.

Proof. First of all observe that the extensions F, /K and K (E~)/K are totally ramified respec-
tively at p and p. Then the global Galois group coincides with the local one. By Theorem
applied to the elliptic curve case, we have
Gal(Foo/K) = (im Of5")* = 7,
P

Gal(K(Ex~)/K) = (lm O/p")* = Z;

that define the maps k1, k2. Observe that the theorem depends on the fact that E» is a free
O/p™-module of rank 1. If for all u € Ezm+1 we have u? = au for 0 € G and a € Ok we have
that o correspond to an element in (O /p"T1)* that could be represented by an integer modulo
p™*1 through the isomorphism O/p™*" = 7 /p™+1 7. O

Theorem 2.8. The Galois group of G« is of the form
G =T x A
where T = Z, X Zp = Gal (Koo, Kop) and A= (Z /(p—1)Z) x (Z /(p — 1) Z) = Gal(Ko o/ K).
Proof. By the previous Lemma, we have that Gal(K[7*°]/K) and Gal(K[r*°]/K) are isomor-
phic to Z,; . Furthermore observe that from Corollary (ii) we have
Gal(K (E[r" P17 /K) = Gal(Kpm/K) = (O /pn "> =
= (O /p") x (O A1)

19



CHAPTER 2: ELLIPTIC TOWER FIELD

Since K is generated by K (Ez~ ), K(E~) we deduce
(k1,k2) : Goo = L) XL .
Furthermore, we have
Gal(Koo/K) = (Ok /pp)* = (Z [pZ)* x (Z [pZ)* = A.
From the isomorphism Z; = (Z /(p — 1) Z) x Z;, we conclude

I'= Zp X Zp = GGZ(KOO,KO,Q).

We denote by x1, x2 the restriction of k1, ks to A. Together they generate Hom(A,Z,).

Let A = Z,[[T1, T»]] be the ring of formal power series in two indeterminates. Let u a topological

generator of (1 + pZ,) and let 1, 2 two elements of I for which

In particular, any Z,-module B on which I acts continuously can be endowed with a unique

A-module structure such that

Nz = (1+T)z,
Yox = (1 + 1)z

forall x € B.

20



CHAPTER 3

Elliptic units

This chapter is the essential core of the whole mémoire. We define the elliptic units and we
study the relation with special values of L-functions. The elliptic units will be defined as certain
rational functions of z-coordinates of torsion points on a CM elliptic curve. In particular, they
are units in abelian extension of quadratic imaginary fields, they play a role analogous to that

of circular units in abelian number fields.

The bridge between special values of Hecke L series associated with K and elliptic units is
provided by special values of Eisenstein series. Following De Shalit’s [DS87] approach we will
call them Eisenstein numbers since their role parallels the role Bernoulli numbers play in the

cyclotomic theory.

3.1 Theta functions

We start studying the rational function © g , on the elliptic curve. We will explore its properties

from both the algebraic point of view and from the complex analytical one.

3.1.1 Theta function over K

Let K be an imaginary quadratic field with ring of integers Ok and assume K has class number
1. Consider E an elliptic curve defined over K with complex multiplication by O. Let S be

the set of finite primes ¢ with bad reduction together with 2,3. Fix a Weierstrass model for £
y* =42 — g2z — g3 3.1)

such that the discriminant of is divisible only by primes of K lying above primes in S (See
[Sil94].VIIL8). In particular, let p(z) be the Weierstrass function associated with and L the

period lattice of p(z). Then we have a group isomorphism

¢€:C/L — E(C)

2= (p(2), 9'(2))-
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CHAPTER 3: ELLIPTIC UNITS

As usual, we identify Endg (E) with O in such a way that the endomorphism corresponding to
a € Ois &(z) — &(az). Furthermore, there exists (2o, € C such that L = Q0. Leta C O be

an integral ideal of K prime to the ideals in S. We denote Na the absolute norm of a and a= 'L

denotes the lattice Qca™!.

Definition 3.1. Define © g o a rational function on E with coordinate functions x,y by
Opqa=a PAEN [ (@-=2(P) " (3.2)
PeE,—O

Lemma 3.1.1. Let a be an integral ideal of K

(i) ©p,q is independent of the choice of the Weierstrass model.
(i) if ¢ : E' — E is an isomorphism of elliptic curves then O ¢ = O q © .
(iii) Of,q is a rational function on E defined over K with divisor

12Na[0] — 12 > [P). (3.3)
PEE,

Proof. (i) Any other Weierstrass model has coordinate functions z’,y" given by

 =ulx+r

/

Yy =udy+sv+t
with u € C*, and then a, = u’a; and
A(E") = u'?A(E).
By Prop. we have #F, = Na and then we obtain
Opa=a PAE)NT T (@ —a'(P) " =
PEE.—O
:a—12A(E)Na—1u12Na—1 H u_12(m—x(P))_6 _ @E,w
PEE.—O
(ii) In the previous point we showed O , is independent of the Weierstrass model. Fix a
Weierstrass model for E with coordinate function z, y and consider the Weierstrass model

induced by ¢ with coordinate functions 2’ = = o ¢,y = y o ¢. In particular we have

A(FE) = A(E') Then applying ¢ we get

Opgop=a RAE)N ! H (xop—2(P)) =05,
PEE.—O
(iii) Observe that a € K, A(F) € K and Gal(K/K) permutes the set {z(P) : P € E, — O}
so Gal(K/K) fixes ©p 4. The coordinate function z is an even rational function with a
double pole at O and no other poles. Thus for every point P, the divisor of x — z(P) is
[P] + [-P] — 2[O]. Since #FE, = Na we conclude
div(@pa) = Y (6[P]+6[-P] —12[0]) = 12Na[0] - 12 > [P].

PcE[a]-0 PEE,
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The following theorem is the fundamental result of this section and it will be the key in the

construction of the elliptic units.
Theorem 3.1. Let b a nontrivial ideal of Ok relatively prime to a, let QQ € Ey be a primitive b-division
point.

(i) ©p.4(Q) € K(b).

(ii) If ¢ is an ideal of O prime to b, c a generator of ¢, and o = (¢, K(b)/K) its Artin symbol. Then
we have
©p,a(Q)7 =Opa(cQ)
(iii) If b is not a prime power then O o(Q) is a global unit of K (b). If b is a power of p then O (Q)

is a unit at primes not dividing p.

Proof. (i) By the previous lemma, we have ©g , belongs to the function field K(F). Let ¢
be the Hecke character associated to E by Theorem Then consider = € U(b) C Ay
an element in the Ray class group modulo b with z, = 1. In particular we have z = 1
mod *b and let o, = (z, K% /K) its Artin symbol. By Corollarywe have

Q7 = (2)Q.

where ¢ (z) € O induces an automorphism of E through the isogeny associated. There-

fore we obtain the chain of equalities
®E7a(Q)0m = eE,a(Qaz) = eE,a(w@?)Q) = @E,u<Q)
where the last equality follows by Lemma (ii).

(ii) Let now z € A} be an idele with zO = ¢ and z, = 1 for p dividing b. Then by Corollary
we have ¢(z) € cO* and ¥(x)Q = Q<. So again using Lemma (ii),

Op,a(Q)” = Opq.(Y(2)Q) = Op,q(cQ).

(iii) Let p be a prime of K such that b is not a power of p. Up to consider a different Weierstrass
model, we can assume E has good reduction at p, so that A(F) is prime to p. Let n = v (a).
Then

vp(Op,q(Q)) =—12n—6 Z vp(z(Q) — x(P)) =

PEE,—O

—20-6 Y (@) - o(P)-
PeEy,n—-0O

6 Y uQ —a(P).

By Lemma since b is not a power of p we get

vp(2(Q) — z(P)) =
{—2/(Npm — Np™~1) if P has order exactly p”,m > 0

0 if the order of P is not a power of p.

23



CHAPTER 3: ELLIPTIC UNITS

From this we get
p(Opa(@)=-120-63_ >  v(a(Q)—(P)) =0.
=1 PEEpi —Epi—l
Observe that if b is not a prime power then O ,(Q) is unit for every prime. Otherwise, if
b = p” then O ,(Q) is a unit outside of p.
O

Theorem 3.2 (Distribution relation). Let b an integral ideal of K, relatively prime to a, let b € O

any generator of b. Then we have

II ©5.a(P+R)=0g5a(8P)

ReFE,

where the product is taken over the b-torsion points.

Proof. First of all, observe that both sides of the equation are rational functions on £. By Lemma
we can compute the divisors

div(©p.qo(P+ R)) = 12Na[-R] - 12 > [Q - R

QEE,
div ( 11 @E,G(P+R)> = Y 12Na[R]-12 Y > [Q+R]
ReFE, ReFE, REELQEFEa

for R € Ej. Since a, b are coprime we deduce [Q + R] runs over all ab-torsion points for Q) € E,

and R € Ey,. We can then rewrite

div( II @E,a(P+R)> = > 12Na[R]-12 Y [Ql.

REE, ReE, QEEqp

We conclude by observing that the last equation coincides with the divisor of © g (8P)

div(Op..(BP)) = Y 12Na[R]—12 Y [Q.

ReFE, QEEqs

Thus their ratio is a constant A € K*, and we need to show A = 1. Let wx = #(Ok)* and fix a

generator « of a. Using the definition in (3.7) we can evaluate the ratio at P = O

\— HREEb Op,q(P + R) |p—o =
@E,a(ﬁp) B
- a 12NeA(B)Na- DNV T [oer. 10y (@(P+R) —z(Q))~° B
- a”PAE)Y " ] gep, -0y (@(BP) = 2(Q))~° n=o =

A(E (Na—1)(Nb—1) B o
= a12((N)b1)512(Na1) H H (@(R) —2(Q) ™ = p

REE,—{0} QeE.—{O}

where

A(E)(Nafl)(Nbfl)/wK

_ —6/wrg __ ,,w
H= Q2(No—1) wi grz(Na—1) fwx 11 I[I @@®) —2(@) 5r = px.
ReE,—{0} QeE.—{O}
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From the fact that (a,6) = 1 we then deduce that Na — 1 is divisible by wg. Since wx divides
12, then all of the exponents in the definition of y are integers. Furthermore, 4 is fixed by
Gal(K/K) and then we deduce ;1 € K*. Let q a prime ideal of K, then we have

wivq(p) = —12(Nb — D)vg(a) = 12(Na = D)ug(b) =6 > Y wvg(x(R) — 2(Q)).
REE,~0 QEE.—O
Since a, b are coprime we have that q divides only one or neither of them. By Lemma we
then have
—2/(Ng™ — Nq™~') if R has order exactly ¢™, m > 0
vg(z(R) — 2(Q)) = { —2/(Nq™ — Nq™~!)  if Q has order exactly ¢™,m > 0
0 if the order of P and () is not a power of q.

Analogously to the computations in the proof of Theorem we deduce vq(;t) = 0 for every

prime q and then y is a unit. We conclude A = p“% = 1. O

Corollary 3.2.1. Let b an integral ideal of K coprime to a, Q € Ey be a primitive b-torsion point, p a
prime ideal dividing b,  be a generator of p, and b’ = b/p. Let e = wys /wy then

Op.a(TQ) if plb’
Op,a(mQ)' =% ifptb’

where in the latter case o, = (p, K(b")/K) is the Frobenius of p in Gal(K(b")/K).

Nk (0)/k(6)OE,a(Q)° = {

Proof. Let U denote the multiplicative group U = 1 + b’(O/b). By Theorem [A.4 we have the

following diagram

U —— Gal(K(b)/K (b)) 1 1
1 —— 0x/(OfFNK") —— K°/K®! C18. Clg —— 1
1 —— OX/(OFNKY ) —— K /K1 o% Clxg —— 1

where K®/K®! = (O /b)* and K% /K®"' = (O /b')*. Applying the Snake Lemma we get
the following map is surjective
U — Gal(K(b)/K(5)

denote by u — o, with kernel of cardinality e = wy /wy. Therefore, by Theorem 3.1} (ii) we have

Ni(oy/x67©024@Q)° = [] 0% = [] O£.(uQ).

uclU uclU

We then now observe
{uQ :ueU}={PeEp:7P=7Q, PZE[t)|} =

_J{Q+R:Re By} if p|b’
{Q+R:ReE,, R# —Q(mod Ey)} ifptb.
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Thus by Distribution relation Theorem 3.2} if p|b” we have

Nk o)/ k(61 OE,a(Q)° = H Op,a(Q+ R) = Opq(7Q).

REE,
Similarly, if p 1 b’

Op,q(Q + Ro)Nk ) /k(6)OF,(Q)° = Op,(1Q)
where Ry € E, satisfies Q + Ry € Ey . By Theorem (ii) we have

Op,a(Q+ Ro)°" = Op.a(mQ + TRy) = Op q(7Q)

so this completes the proof. O

3.1.2 Functions on complex lattices

In order to study the theta function from the complex analytical point of view we recall the

definition and properties of some classical complex functions.

Let L = Zwy + Zw, be a lattice in C, whose basis is ordered so that 7 = w; /w, belongs to the

upper half-plane.

Definition 3.2. Let o(z, L) be the Weierstrass's o-function and Ramanujans’s A function defined by

the absolutely convergent products

en=s T 0D (G5 6))

o 12 [e%e) .
A(L) = (w) qr H(l —¢M?, ¢, = exp(2miT).
n=1

Definition 3.3. For a lattice L define

A(L) := m tarea(C /L) = (2mi) ™ (w1 @7 — woto1)

n(z,L) == A(L)"*Z 4 s5(L)z
In particular, the Weierstrass’s o-function of L satisfies the following transformation law.
Lemma 3.1.2 (Transformation law). Let w € L, then we have the following identity
w

o(z4+w,L) = +o(z,L)exp (n(w, L) (z + 5)) (3.4)
Proof. See [We] Chapter IV,3-4. O
Definition 3.4. Define the fundamental theta function 0 as

0(z,L) := A(L) exp(—6n(z, L)z)o(z, L)% (3.5

The theta function is non-holomorphic due to z in n(z, L).
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We have the following useful homothetic relation.

Lemma 3.1.3. For every ¢ € C non-zero we have

O(cz,cL) = 0(z, L). 3.6)

Proof. By definition we have
n(cz,cL) = A(cL) ™'z + sy(cL)cz = ¢ 'n(z, L)

and

stescr)=es J[ (1= Z)ew (24 5(c2)") =eotan

weL—{0}

We conclude

0(cz,cL) = A(cL) exp(—6n(cz, cL)cz)o(cz, cL)'? =
= ¢ 2A(L) exp(—6n(z, L)z)c?0(2, L)*? = 0(2, L).

3.1.3 Theta functions over C

Let a C Ok be an integral ideal of K prime to the ideals in S. We denote Na the absolute norm

of a and a—!L denotes the lattice Q. a".

Definition 3.5. Define ©(z, a) as an elliptic function

O(z,a) = a” PA(L)N! II (o) —p@)™® (3.7)
u€a—*L/L—{0}

where the product is taken over a set of representatives {u} of the non-zero cosets of a=* L/ L. Recall that
the number of cosets a=*L/L is Na.

From this equation, it follows ©(z,a) = O, o . In particular, we can restate the results of
Section in terms of complex L-elliptic functions.

Theorem 3.3. Let b a nontrivial ideal of Ok relatively prime to a, let v € b=1 L be a primitive b-division

point.

(i) O(v,a) € K(b).

(ii) If ¢ is an ideal of Ok prime to b, c a generator of ¢, and o. = (¢, K(b)/K) its Artin symbol. Then
we have
O(v,a)7 = O(cv, a)

(iii) If b is not a prime power then ©(v, a) is a global unit of K (b). If b is a power of p then ©(v, a) is

a unit at primes not dividing p.
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Theorem 3.4 (Distribution relation). Let a and b be integral ideals of K, relatively prime to each other,

let B € Ok any generator of b. Then we have

H O(z+v,a) = 0(Bz,a)

veEb~IL/L

where the product is taken over the set of representatives of b-division points.

Prop. 3.1.1. O(z,a,L) =0(z, L)N®/0(z,a"1L).

Proof. Let f(z) = 0(z,L)N®/0(z,a"1L) then we have that f(z) is meromorphic. Indeed, we
have explicitly

B A(L)N“a(z,L)12N“
1®) = Ao Doz a 1D

exp[—6z(Nan(z, L) —n(z,a”'L))].
In particular, we have that the factor containing Z cancels out

Nan(z, L) —n(z,a L) = NaA(L) *Z+ Nasa(L)z — A(a L)™'z — so(a™ ' L)z =
= Nasy(L)z — sa(a™'L)2.

We conclude f(z) is meromorphic. Furthermore, f(z) is periodic with respect to L. In fact,
using the transformation law we have for every w € L

o(z+w, L)V o(z,L)"*Nexp (12Nan(w, L) (2 + %))
o(z4w,a 1L)?  g(z,a"'L)exp (n(w,a"'L) (2 + £))
O.(Z7L)12Na

D (4 5) o) i)

and

(2 +w,L) = A(L)" (2 + w) + s2(L) (2 + w) = (2, L) +n(w, L).

Then we conclude f(z 4+ w) = f(z). From the explicit definition of o we have that the divisor of
6(z, L) is given by
12Nal0] = ) [ul.

we€a~'L/L
By Lemma we deduce O(z, L) = A\f(z) with A € C* constant. Both functions have Laurent
series beginning with o 12A(L)12(Na=1);12(Na—1) gq \ = 1. O

Corollary 3.4.1. Let b a nontrivial ideal of O relatively prime to a, let v € b~'L be a primitive b-
division point. If ¢ is an ideal of Ok prime to b, and o. = (¢, K(b)/K) its Artin symbol. Then we
have

O(v,a)% = O(v,ac)O(v,c) Ve,

Proof. Recall that by Theorem [3.3]we have
O(v,a)’c = O(cw,a)

with ¢ a generator of ¢. Then by the previous proposition, we get

O(v, )7 = 0(cz, L)N*  f(z,cL)N®
v ~ O(cz,a L) f(z,cta"lL)
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where the last equality follows from Lemma[3.1.3] Then we conclude

0(z,cL)N* Oz, PL)N® f(z,L)Nee

. — —Na
e Ta L) - Oz caiL) Gz DyNe - 00800

3.2 Eisenstein series and L-functions

3.2.1 Eisenstein numbers

Let L be a lattice in the complex plane generated by w; and ws with $(wz/w1) > 0. Recall that

we have A(L) = (27i) ! (wow1 — w1l is the area of the lattice L.

Definition 3.6. We define a pairing for z,w € C by

Lemma 3.2.1. For a,z,w € C the pairing has the following properties.

(1) <Z7w>L = <_w,Z>L = <w72>21/
(i) (az,w)p = (z,aw)r,
(iii) z € Lifand only if (z,w)r = 1forallw € L.

Definition 3.7. For each integer k > 1, = € C—L, and w € C, we define the Eisenstein-Kronecker-
Lerch series Hy(z,w, s, L) by

(Z+7)
Hy(z,w,s,L) Z|Z+7|29 wyr,  Rs>k/2+1.

For a fixed zy, wo € C, we define H} (29, wo, s, L) by

(z0 +7)*

, , Rs > k/2+1.
20+ A% (v, wo) L S /2 +

H (ZO,'UJ(J,SL Z|

where the sum is take over all w € L other than —z if zo € L. The series converges absolutely for
Rs>k/2+1

Observe that Hy(z,w, s, L) = H}(z,w,s, L) if z € C—L.
Prop. 3.2.1. Let k > 1 be an integer.

(i) The function T'(s)H}(z,w, s, L) for s continues meromorphically to a function on the whole com-

plex plane, with possible poles only at

(@) k=0, z € Lwithsimple pole at s = 0 and residue (—z,w);

(b) k=0, w € L with simple pole at s = 1 and residue A(L)~" if w = 0.
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(i) H}(z,w,s, L) satisfies the functional equation

L(s)H} (z,w,s,L) = A(L)*'=%T(k +1 - s)H} (w, 2,k + 1 — 5, L)(w, ).
Proof. See [WeiZ6], VIIL, 12. 0

The function z — Hj/(z,w, s, L) is even or odd if k is even or odd. Furthermore, it is periodic of

period L. Let D the differential operator defined by

’D_*g_kf i_i_* (9
_Zaz wal awg

Observe that in particular, we have D(A(L)) = 0. The Eisenstein-Kronecker-Lerch series for

various integers k and s are related by the following differential equations.

Lemma 3.2.2. Let k > 0 be an integer. The function Hy(z,w, s) satisfied the differential equations

0, Hy(z,w,8) = —sHp11(z,w, s + 1),

OzHy(z,w, s) = (k —S)Hk 1(z,w, ),

OwHp(z,w,8) = =A™ (Hyy1(2,w, 8) — ZHy(z,w, s)),

O Hy (2,0, 5) = A (i1 (2,0, 5 — 1) — 2Hy (2,0, 5)),
) =

DHj(x,0,s) = —sHp42(x,0,5 + 1)

Proof. The proof follows by the definition of the Eisenstein-Kronecker-Lerch series for s >

a/2 + 1. The statement for general s is obtained by analytic continuation. O

Definition 3.8. Let 2o, wo € C. For any integer k > 0, j > 0, we define the Eisenstein-Kronecker
number E; (20, wo, L) by
Ej,k(z()a wo, L) = H;J,-k(ZOa wo, ka L) =

Zo +Wo)? . .
ZMW,wO) ifk=>j+3.
yeL

For simplicity we will omit the variable w when we will consider w € L, E; (z,L) = E; (2,0, L).
Definition 3.9. For k > 1 define the Eisenstein series by

Ex(z,L) = H(2,0,k,L) =

In particular we have Ey(z,L) = Ey x(z, L).

By definition, we have the following homogeneity properties.
Lemma 3.2.3. For every A € C* and every k > j > 0 we have
() Br(AzAL) = A" Ey(z, L),

VAL

(i) E;r(Az,AL) = WEJ-JC(AL).
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Lemma 3.24. (i) Ey(z,L) = d% log(o(z, L)) — so(L)z — A(L) "'z,

(ii) Fa(z,L) = —diZEl(z,L) = p(z,L) + s2(L),

_1\k k—2
(iii) Fx(z, L) = (l(c _1)1)! (i) p(z,L)ifk > 3.

_1)k-1 _
(iv) Ejx(z, L) = ((kl_) i DIF I E (2, L) forall k > j > 0.

Proof. See [WeiZ6]. O

Prop. 3.2.2. For k > j > 0 integers, exists a polynomial P; , in j + k indeterminates, of degree j + 1,
with integer coefficients such that

Biwl(1) = g I)E?(_L;)ﬂ)] Gy kB L), B, 1)

Proof. See [WeiZ6].V14. O

3.2.2 Relation with L-values

Definition 3.10. Define the Hecke L-functions associated to powers of 1) to be the analytic continuations
of the Dirichlet series

Z i

summing over integral ideals b of K prime to the conductor of w . If mis an integral ideal of K divisible

by fand o € Gal(K (m)/K) then we define the partial Dirichlet series
—k

—k b
LK(m)(¢k7S7U) = Z /l)i\/'(bs)

(b,K(m)/K)=0

where the sum is restricted to the integral ideals of K prime to m whose Artin symbol for the extension
K(m)/K is o.

Theorem 3.5. Let m be an integral ideal of K divisible by §, and consider p a m-division point. Then for
every k> j >0,
_ —k
Ei(p, L) = p~ ()" Lic(m) (¥, K, ), (38)
Bjx(p L) = p~ =N Qo) F Lic g (B k). (3.9)

where ¢ = Q3 pm

Proof. Let m € O be a generator of m, then we have p = af/m for some o € O prime to m.
Then we have for #s > k/2+ 1

(p+w)* (@Qo /M + Qs B)*
Hi( L) E § -
5(p,0,s, | REE |an/m+ﬂg 25

w€eL

—k
Nm® Qs
- mk ‘Qoo|25 Z
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By definition of the Hecke character i) we can define

£(B) =(80)/B

to be a multiplicative map from {5 € O : (80, f) = 1} to O*. By definition of the conductor, ¢
factors through (O/f)*. Thus if 8 = @ mod m, we have ¢(5) = ¢(a) and then

B = 9(80) 129
«
Therefore we can rewrite
—k —k
s 7oy > 7o) _
|ﬁ‘25 Oék Nbs
Bzaﬁegéd o (b,K(m)/K)=(a,K(m)/K)
() —k

" L)W, s,¢)
where ¢ = O = pmQ~!. In particular, we then conclude
. mk —k
Ey(p, L) = Hi(p,0,k, L) = WW)me)(w ok, )
«a (e}
where we recall p = af)., /m. Analogously we have

' A S (3 AR
Ejvk(paL):Hj-&-k(vaakaL) Ttk |Q |k itk LK(m)(w]

k)

i —j i i —j+k
=p J kNm leoo|2jw(c)J+kLK(m)(1/)] k. c).

O

Corollary 3.5.1. Let m be an integral ideal of K divisible by §, and consider p a m-division point. Let
B a set of ideals of O, prime to m such that the Artin map b — (b, K(m)/K) is a bijection from B to
Gal(K(m)/K). Then for every k > j > 0,

k
ZEk =p L@, k),
beB
Z EJ k =p (jJrk)Nm |Qoo|2jLK(m) (Ej+ka k)
beB
Proof. Applying the previous theorem
3 Er@(0)p, L) = pF 3 () (co) Licimy (@, k. o)

beB beB
where ¢, = Q2 19(b)pm. Since p is a m-division point, we have O = Q! pm and then ¢, = b. We
can then rewrite
- —k _ —k
beB beB

Analogously we have

> Ej((0)p. L) = Y b(0) 7 p I AN m I QeI Ly (B R) =

beB beB

J+k

= p TN Qeo| ¥ Lic(m) (@7, K)
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Theorem 3.6. For all integral ideal a of K, we have that the Laurent expansion of log ©(z, a) at zo € C
is given by

dilz logO(z,a) = 12 ;(—l)k(NaEk(zo,L) — Eix(z0,a L)) (2 — 20)F 1.

Proof. First of all observe that from the definition[3.4)of 6(z, L) we have

log(0(z, L)) = log(A(L)) — 6s2(L)2* — 6A(L) 2z + 121log(o (2, L)),

diz log(A(z, L)) = —12s5(L)z — 6A(L) ™'z + 12% log(o(z, L))

Then from Prop. we get

d d d
- log O(z,0) =Na—-log 0(z, L) — - log 0(z,a"'L) =

=— Na (1252(L)z +6A(L)" 'z - 12% log(o(z, L))) +

+12s9(a L)z +6A(a™ L)z - 12% log(o(z,a"'L)).

Since A(a='L) = A(L)Na then using the Lemma we get that the right-hand side of the

previous equation is equal to

d
= log©(z,a) = 12NaFE,(z,L) — 12E1(z,a 'L).

By repeated differentiation using Lemma we obtain

k
<ddz> log ©(z,a) = 12(—1)"(k — 1)! (NaEk(z,L) — Ey(z,a 'L)).

O

Corollary 3.6.1. Let m be an integral ideal of K, and consider p an m-division point. Then for every
integral ideal b of K coprime with m, the following hold

(i) Ex(p, L) € K(Ew),

@ (%57)  Einte.) € K(En)

(111) Ek(pv L)Ub = Ek('l/}(b)pa L)/

where oy is the Artin symbol associated to b.

Proof. First of all, observe that since ©(z, L) is a rational function in p(z, L) with coeffiecients
in K, then by addition theorem we deduce that ©(z + p, L) is a rational function in p(z, L) and
©'(z, L) with coefficients in K (E,,). By the previous theorem we conclude that the coefficients

of the Laurent expansion
(_1)k<k - 1)'(NaEk>(p7 L) - Ek(zoa Cl_lL»(Z - p)k
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are in K(Ey). Consider now a € Ok such that « = 1 mod m and take a = («). In particu-
lar we then have ap = p mod L. By homogeneity property of the Eisenstein series we have

Er(p,a L) = o* Ex(ap, L) and then we conclude

dz
This proves that Ej(p, L) belongs to K(E,). By Prop. we deduce (ii). Furthermore,

considering b an integral ideal of K coprime with m and applying o, to the previous expression

( d )k k-1 .
— ) log®(z,a) = (-1)"""12(k — 1)!(Na — &) Ex(p, L).

we get
_1\k d k
Ex(p, L)% :12(k _ 5);(1])\7‘1 — ak) ((dz) log©(z + p,a)?® |z=0> =
—1)k d\*
:12(k _ 5)12\7& _ ak) ((dz) log ©(z +1(b)p, a)z=0> =
=Ex(¢(b)p, L)
that concludes the proof. O

3.3 Elliptic units

For simplicity, denote H,, = K (fﬁmﬂ) and H,, ,,, = K (fp“*lﬁmﬂ the Ray class fields of K
‘

respectively modulo fp™*" and fprtip™ . Recall that by Lemma [2.2.4 we have the following

diagram of extensions of fields.

Hn ,m

m

\K
- -
K(E[f])
\

In the previous section, we have seen two special properties of Eisenstein numbers. The first is

H
Fm
K
that they are related to values of L series and the second one is that the appear in the Laurent
expansion of the logarithm of theta function. In order to construct a measure that interpolates
some special L values, we construct a new rational function as product of translated theta

function. The exactly relation between the lambda function and the L values is provided in
Theorem 3.7

Definition 3.11. Let p = Q. /f and let B be a set of integral ideals of K prime to § such that the set
of elements (b, K (f)/K) for b € B is a set of representatives for the Galois group Gal(K (f)/K). For a
integral ideal of K prime to Gpf, we set

Az,0) = T] O+ v(6)p, ).

beB

34



CHAPTER 3: ELLIPTIC UNITS

We can extend the previous definition to higher ray class fields in the following way.

Definition 3.12. Let p,, = Qo /7" and let B,,, be a set of integral ideals of K prime to fp such that
the set of elements (b, H,,,/ K) for b € By, is a set of representatives for the Galois group Gal(H,, /Fy,).
For a integral ideal of K prime to 6pf, we set

Ap(z,0) = H O(z 4+ ¥ (b)pm, a).

beB,,

Lemma 3.3.1. The functions A(z, a) and A, (z, a) are rational functions of p(z) and o' (z) with coeffi-
cients respectively in K and F,,. They are independent of the choice of the set of ideals B and B,,.

Proof. We prove directly the statement for A,,(z,a). First of all observe that p,, is a torsion
point p,,, € E[f7™*!] and then by Lemmawe have p,, € E(H,,). Since ©(z, a) is a rational
function of p(z) with coefficients in K, we deduce by the addition formula that ©(z + p,,,, a) is
a rational function of p(z) and ¢’(z) with coefficients in H,,. If b is an integral ideal prime to fp,
then by Corollary [B.3.1}(ii) we have

E(pm) OB = £(4(6) prm).

In particular, we obtain the function O(z + 1(b)p.,, a) applying (b, H,,,/ K) to the coefficients of
O(z + pm, a). We conclude the function A,, is independent of the choice of B,,. O

Theorem 3.7. For all integral ideal a of K and m > 0, we have the following Laurent expansions

L log Az a) = 123 (1) O (Na — 0(@)) L (8 K) 2 — 20)",

E>1
d _
—log Ay (A "z, 0) = 12 Y (—1)F O (NaLs, @" k1) — ¥ (a)Lp, (3", k, a).
k>1

Proof. By definition of A we have

log A(z,a) = Zlog@ z+1(b)p, a).
beB

In particular, Theorem [3.6|gives us

k
(i) log A(z,a)|:=0 =
=(-DF112(k — 1)1 > (NaEg((b)p, L) — E(¥(b)p,a ' L)).

beB

Applying the result of Theorem we obtain

3" NaBEy($(b)p, L) = Nap Ly (", k)

beB
3 Er@(0)p,a L) = 3 d(a)Ex(w(ab)p, L) = (a)*p,  Lic (& k)
beB beB

where we have used the fact that a is coprime to 6pf and then ab defines a new set of represen-

tatives for the Galois group Gal(K (f)/K). Combining the two relations we get
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k
() towAGiloo=
=(—1)F112(k — 1)1 Y (Nawh(a)p * Ly (8, k).

beB

Since p = Q. /f we conclude

k
() 0w A mlco = 12014102k = YN8 = (o)) e (B, ) — 20

The proof of the Laurent of A, is identical paying attention that the sum is taken over B,, galois

representatives over H,,/F,,. See [Yag82] for details.

O
Corollary 3.7.1 (Damerell’s Theorem I). For every k > 1,

_ —k
O L@ k) € K.

Proof. By Lemma[3.8lwe have that A(z) has a series expansion with coefficients in K. Then the

first equation follows directly from the previous theorem. O

Corollary 3.7.2 (Damerell’s Theorem II). For every k > j > 0,

or 1\’ ; —k+j
— ) L k) eK
Proof. Let p be an f-division point. By Corollary we have the following relation between

Eisenstein numbers and L values

—G —j j itk
Y Eiw(@(0)p, L) = p~ U NmT |00 | L) (&7
beB

k). (3.10)

Furthermore, by Prop. we have that exists a polynomial P;;, in j + k indeterminates, of

degree j + 1, with rational coefficients such that
(A(L)/2)’
(k=1 =2)---(k-j)
Combining the two relations we obtain that the left-hand side of equation (3.10) is given by
(A(L)/2)’ times a linear combination with rational coefficient of Ej (v (b)p, L) for b € B. Since

Ey(¢(b)p, L) is algebraic over K we deduce that the right-hand side divided by (A(L)/2)7 is
algebraic. Recall that the area of L is given by

Ej’k(Z7L) = PjJ{;(El(Z,L),...7Ej+k;(z,L)).

Qo 2
A(L) = [0 PAOr) = Sl 2m'| N7

We then conclude that _
J L
(2”) Q) L, @ k)

is algebraic over K. O
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Definition 3.13. Let I denote the set of integral ideals of K which are prime to 6pf, and let

S= {u : I — Z| p(a) = 0 for almost all a € I and Z(Na— Dp(a) = 0}.

acl
If p e S, we set

O(zn) = [0V, Au(zn) = [T Am(z0)".

ael ael
Lemma 3.3.2. Let u € S. Then for each integers n, m > 0, we have

[T AnGz+mw) =An(x"zp)
nep~—"L/L

where the product is taken over a set {n} of representatives modulo L of the n"-division points of L.

Proof. Since 7™ is the generator of the ideal p™, it follows from Distribution relation Theorem

B.2that
I[I AwGrmm= T I ©G+n+e®pmn) =

nep~—"L/L neEp~—"L/LbEB,
= ] @™z +x"n+¢(6p")pm; -
bEBm
Observe that bp™ defines a set of representatives B, for the Galois group Gal(H,,/F,,). By
Lemma[3.3.Jlwe conclude
I AmGz+mw) =An(x"zp).
nep~"L/L

O

Let T denote the Tate module lim En+1, where the limit is taken relative to the usual projection
maps given by multiplication by powers of 7. We fix a generator v = (u,,) as O, module of T},

i.e [7](unt1) = un. We can for example fix u,, to be £(Qoo /7") = —20(Qoo/7") /' (R0 /7™). Let

7, € Csuch that u,, = ¢(7,), where £(z) is given by €(z) = —2p(z)/¢’(z) as discussed in Section
Since [t u,, = 0, we have that 7"*17,, € L. Since 7 is a unit in lim Ok /p™ = Z,, we can

n+1

choose ¢,, € Ok such thate, 7 =1 mod p and obtaining

5(8ZT+ITn) = [5nm+1]un = [ﬁ_(m—i_l)]un

7rL+1p m—+1

We can then construct fp nt+l_djvision points taking " "7, + pp,, indeed we have

[ffm+17rn+l]5(€;n+l7'n + pm) = [ffm+lﬂ_n+1][ﬁ—(m+1)}un[_~_] [ffm+17'('n+1]€(pm) —0.
By construction, we have the following diagram.

m’+1

Ent Tn'
A*WL
E;n;-i_lTn' 7r"/7"
.
ﬂ_nlfn EZL +17-n
e
emtlr,

37



CHAPTER 3: ELLIPTIC UNITS

Definition 3.14. We call elliptic units C!, ., the subgroup of the units of K,, ., generated by © (™11, +
Pm; ) forall p € S.

Lemma 3.3.3. C,, ,, is stable under the action of the Galois group Gal(Hp, . /K). In particular, C;,

n+1

is independent of the choice of the primitive fp ™+ _division point p, m, of L.

Proof. Let b be an arbitrary integral ideal of K, prime to S and p, consider o, = (b, Hy, ;n,/K)
the Artin symbol of b. Let 3 any generator of b. Thus by Theorem 3.1 we have

®(pn,m,; ,u)ab = @(5Pn,mv :U‘)

Since b is coprime with §, p and p we deduce the values of © at two different primitive fp™+p"* -

division points belong to the same orbit under the action of Gal(H,,,/K). By Corollary 3.4.1]

we obtain

O(pnmi ) = [ [(O(pnm: )7 )" = TT(O(prn,m, )0 (P, b) N =

acl acl
= O(pn,m> b)iNaZuEI e H O(pn,m; ab)u(ﬂ)
acl

Define y/ : I — Z as follows

0 ifbta
p'(a) = —Na) . mu(a) ifa=b
plab™t) ifb|b, ab.

Then we observe
Z(Na—l :—NaZu —|—Z(Nab—l)u(a)=Z(Na—1)u(a):0
ael ael abel acl
and so we conclude i/ € S. In particular, we deduce ©(p,, m; 1)7" = O(pp,m; 1) and then the

elliptic units are stable under the Galois action. O

Lemma 3.3.4. Let m’ > m > 0and n’ > n > 0. Then, for each u € S,

Q" T Hin [ K) (et

Ny /,m//Hn,m@(gzt +1Tn/ +pm/§.u) = TnJFPm?.U)-

n

Proof. Let ¢ be an integral ideal of K, prime to 6pf whose Artin symbol o, = (¢, Hy,/ /K fixes
the subfield H,, ,,. Let p a fp"" ™ p"*-torsion point of L, then by Corollary we have

€(p) = &(p)7 = &(Y(c)p).
We deduce p = ¥(c)p + v withy € L = Q. Of. Since p € L/ fr" 7™ 1 we obtain

P(e) =1 mod fp" ™t

m+1

Considering now the primitive fp™ +1p" “+L_division pointe), " Ty + ppy, We can write

Oeny ™ 4 prs )7 = O((e)ery s + (o ) =

= 9(5:?/ Tn’ + P +6ca/1’)
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with 6. = (¢(c) — 1)(e), "+ 4 pmr ) We deduce 6, is a p —"p™ '~™_division point of L. Hence,
P

m "+1 m "+1

Tn' + pmri ) under Gal(Hy: oy [Hp ) is given by ©(e)) ™ 1, +

mm

every conjugate of @(

P +0; 1) for some p™ ~"p -division point §. There are exactly p™ "’ =(ntm) such division

points, which is equal to the cardinality of Gal(H, mm /Hy. m). We conclude

Nttt OEm 70 + prript) = [] O 1m0 + o + 63 11)

n’,m

where the product is taken over any set of representatives of p” ~"p"™ ~"™L modulo L. By the

Distribution relation Theorem [3.2 we deduce

LI O(er e+ pu 4810 = OWH™ B ) e+ pue)i )

. . ' —m) — /Y S
In particular, since ¢(p™ ~"p"™ ™) = 7 ~"7T™ ~™ we have

YT TN En + p) = e £ T T,

H

In the previous lemma we proved O (z +(p)"™ =" py, a) = Q" " Hn K) (24 pm, a) that implies

Oen ™+ pip) = OFT I (5 pi )
which we conclude

Nty o ©Em T 4 s ) = OF7 W Hm /B (et g ).

From Lemma [3.3.4 we deduce the following fundamental corollary.

Corollary 3.7.3. Let u € S and consider

en,m(/u‘) = Af’fl_ (Z; lu)|z:5:1n'+lrn'

Then (enm(u)) € UL..

Proof. First of all observe that by Theoremwe have A, (€™ 1r,; ) is a unit in K, ,,, and so
en,m (i) can be regarded as belonging to U}, ,,,. We need to check the norm compatibility. Since

(p, Hp /K) and ¢ coincide on F),,/, by the previous lemma we have

’ /7
— AT T Hn /K"

’
—-n
® . . —
NKn’ m//Kn,mAm' (Z’ 'u)|z=6;",/+17'7'1 %5 'u)|z:6?+17'n -

n

=A% (% )], emer

Thus, the e,, ,,, (1) are compatible with respect to the norm map, and hence (e, ., (1)) € UL,. O
We write e(u) for (en,m (1)) and C7, for the projective limit of Cj, ,,, with respect to the norm

maps. We then deduce e(u) € C/ forall p € S.

Recall that by Lemma we have A, (z; ) is a rational function of p(z) and ¢’(z). In partic-

ular, A, (z; 1) has a power series expansion with coefficients in F},, and hence in @,
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Theorem 3.8. In terms of the parameter t = —2p(z) /¢ (2) of E, Ay, (2, a) has an expansion
A (z,0) = Z Pge,m (a)tF
k=0
where hy, ., (a) belong to Ry, and ho m(a) is a unit in R,.

Proof. First of all, observe that we have
An(0.0) = T ©@(®)pm,0)= ] O(om. 0)™ = Niz,,/x(©(pm, 0))
bEBm bEBm
and then by Theorem we deduce hg ,(a) = Ay (0,a) € RY. In order to prove the Lemma
we can now show that A,,(z,a)~! has a power series expansion in ¢ with coefficients in R ,.
Take b € B,,, and put n = ¢(b)p,,. By definition we have

A(a™'L) H

O(z+n,a) " = AN (p(z+n) — p(v))°

vea~1L/L—{0}
where v runs through a set of representatives of the non-zero cosets of a=! L modulo L. Let M
denote the finite extension of H,,, which is obtained by adjoining to H,, all the p(v), and let 3
be any prime of M lying above p. Let Oy be the ring of integers of the completion of M at ‘B,
then we claim that ©(z + ) ! can be expanded as a power series in t with coefficients in Og.
Since F has good reduction at p then A(L) is a unit at B. Furthermore, if « is a generator of a
then A(a™'L) = a'?>A(L) implies A(a~'L) is integral at . By the addition theorem we have

/ / 2
o+ - olo) = 1 (SEZEI) — pte) = o) - ol
By Lemmawe have p(n) and p(v), and consequently ¢’(n) and g’(v), lie in Oy since their
orders are coprime with p. In particular recall that there exist two power series a,b € 1+tO,|[[t]]
such that x = t72a(t), y = —2t"3a(t). Then substituting this expansion into the previous

expression we get

—9=3a(t) — o 2
o+ ) - 0(0) = 1 ( Tz e ) = () - ) - o(0)

4
and since a(t) = 1 + t%d’(t) the terms of negative exponents cancel out and we can conclude

1 (=2 Pl + )
ot )90 = (S a9

: ) =0 - o)~ ol0) =
= R R O)(1+ (1) 1720+ 26 (0) o) — plv) =
= () — pl0) + (1) + )

for a'(t),a”(t),a” (t),c(t) € Oxl[t]]. Then ©(z + n,a)"! has a power series expansion with

coefficients in Og. The same is clearly true for A,, (2, a). O

3.4 Table of values

In this final section, we provide some numerical values of the Eisenstein numbers in particular
cases. We are interested in studying the numerical properties of these values for the lattices

attached to elliptic curves with complex multiplication given by O.
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L = Qo (Z +i Z) with Q. & 1.85407467730137191843385034720—1.85407467730137191843385034720:

Q[ o % R % 7

By | %5 | % 24243 8 +2v2 8 4+2v5+2V5+2V5

Be || 0 | —2i | —ZVMUSS 2, /1081 352,/2 2i7/2(1779 + 8215 + /6527405 + 20177027/5)

By || sk | —8i| —lo4_4/ _8iz _ 523 — A (408 + 161v/5 + 7/5945 1 2638V/5)

Buo | 0 | —F | Ziy/a6+ 22 | 2iv/131058 + 026722 2/2(2838999 + 12721215 + \/T6151310740405 + 7223071972862/5)

L =Qu(Z++—-27Z) with Q. = —0.173822480149928796548653183122:

QW-2) 0 45 s s
Ey —2450 —7350 14700(v/6 — 4) —29400(1 + v/2)
Es 68600 —617400 617400(19 — 10v/6) ~1234800(8 + 5v/2)
Ey —2572500 —38587500 —30870000(49v/6 + 136) —246960000(10 + 7v/2)
Eyp 840350000 —2521050000 2521050000(451 — 1961/6) —20168400000(32+231/2)

L=0Q(Z —|—1+T‘/?3 Z) with Q. ~ 2.10327315798818139176252861858—1.21432532394379080590997084489i

Q(W=3)

w1

1|

€

w1

4

Ey
Es
Es
Eng

o o8- oo
~iles

i

|
s
" 2
V)

w0
2 o
S

=
3
&
N

-

—2(2++/3)
B16v3
192 _ 108V3
7 7

512 |, 298V3
b e

L = Qoo (Z+Y=T 7) with Q. & 0.2495894679627255756 72578641846

Q=T 0 3 5 &
E, —525 525 _ 15737 —5250 + 1050v/21 — 3150\/2(3 —-V21) —2100 — 6300v/~7
B —9450 —33075 + 236257 —859950 + 141750v/21 + ~1190700 + 661500v/~7
157504/ 14(—79v/21 — 333)
Eg —118125 3808125 _ 354375+/=7 —96862500 + 26932500v/21 — 263655000 —
14175004/ —42(61v/21 — 279) 25515000v/=7

Eio — 24806250 —62015625 — —16644993750 + 3249618750v/21 — —31107037500 —

12403125v/~7 82687501/~ 1581522/21 — 7235766 6003112500,/—7

L=Q(Z+1=1 {11 Z) with Q4 = 0.157988062436041406847226542091

Q(v/=11) 0 @ @
17248 ~199.1-4551.7¢
E, T 5 (2° 45174422 +1082355740928=0) —4312 + 4312y —11
B _ 664048 . . ~—629214357641i _ 1328096 2656192/—11
6 5 (1252° 4104587560022 +1461180250252802+135841135194781986816=0) 5 5
E _ 127497216 . . ~9450795—12681946i 733108992 _ 223120128/—11
8 25 1252° 4162558950400z —30860126885339136002441255030382161114985725952=0 5 5
E 1041227264 ~—820896839-+1234633907 _ 123125123968 | 8069511296/=T1T
10 5 1252°42662938727680022 +434691632623302357811202+18209282649496627270598642368512=0 5 5

In the proof of Lemma 3.8 we have proven that the expansion of O(1 + z,a) is p-integral for a

integral ideal prime to 6f and 7 a primitive m-torsion point. Recall that by Theorem 3.6 ©(z, a)

has a Lauren expansion given by

logO(z +n,a) = 12> (=1)*(k = 1)!(NaEx(n, L) — Ex(n,a~'L))z".

k>0

The following tables show the integrality of the coefficients.

L = Qo (Z +i Z) with Qo =~ 1.85407467730137191843385034720—1.85407467730137191843385034720:.

We consider a = 70k and m = 20, with torsion point n = wy /2.
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Qi) Ej(wy/2,L) Ey(w1/2,77'L) (k= 1)!(49 - Ey,(w1/2,L) — Ey(w1/2,77'L))
E4 2 4802 9408

Eg -2; — 230298 5644800i

Eg -£ — 6588344 6640994304

Eio Zi 564950498 —13667280076800i

L=Q(Z +1+T‘/TB Z) with Q. ~ 2.10327315798818139176252861858—1.214325323943790805909970844895.

We consider a = 7Ok and m = 20, with torsion point n = wy /2.

Q(vV-3) Ey(wy/2,L) Eip(w1/2,77'L) (k=149 - Bx(w1/2,L) — Ex(w1/2,771L))
E, -1 —2401 14112
Eq 8 352047 —8467200
Es -3 —2470629 12451859280
Exo 2 80707214 -29287028736000

We consider a = 7Ok and m = 30, with torsion point n = wy /3.

Q(W=3) Ej(w1/3,L) Ej(w1/3,771L) (k—1)!(49 - Ey(w1/3,L) — Ey(w1/3,771L))
E,4 -292 —4802V/2 28224/2
Eg 8 2117682 —50803200
Es —u¥1 —19765032/4 99614914560 /4
Ey 462 1856265922 /2 —67360144320000/2

L = Qoo (Z+1Y=7 7) with Qoo ~ 0.249589467962725575672578641846. We consider a = 110y

and m = 20}, with torsion point n = w; /2.

QW=7 Ei(w1/2, L) By(wi/2,1171L) (k= 1)!(121 - Bx(w1/2, L) — Ex(w1/2,1171L))
E, 525 _ 157547 7686525 | 23059575/-7 —22869000 — 68607000y/—7
Es —33075 + 23625v/~7 —58594380075 — 41853128625/~7 7030845360000 + 5022032400000v/~7
Eg 808125 _ SHAITEVET SIS90TT12098125 . T3063128454575 /=7 —2105705048139000000 — 191427731649000000v/=7
Eio —62015625 — 12403125v/=7 —1608525597521390625 + 583701766105550400000000 +
321705119504278125/=7 116740353221110080000000v/=7

By Corollary [.6.1|we know that the Eisenstein numbers at m-torsion point are algebraic. Since
they live in the field K(Ey), the degree of the extension becomes quickly extremely higher.
In particular, using a Computer Algebra System like GP/Pari, naive methods to detect the
algebraicity of these values fail even for 5 torsion points. In order to avoid this problem, we can
use the property of the action of the Galois action and detect the algebraicity through the use of
symmetric polynomials. Recall in particular that by Corollary 3.6.1]we have

Ey(p, L)?* = Eg(¢(b)p, L)

for b coprime with m. In particular, the Galois elements fix the Newton sums

>

pem 'L/L
p primitive

pr(Ek) = Ek(p, L)T.

The following tables show the rationality of these values for some examples. The code to com-
pute the Newton sums can be found in Appendix

L = Qo (Z +i Z) with Qo =~ 1.85407467730137191843385034720—1.85407467730137191843385034720:.

We consider m = 60;,.
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Q(7) D1 D2 D3 D4
E 259 28937 2209807 185649185
4 3 9 27 81
2029832 5737870519264
FEs 0 — R 0 s
E 47989 510611417 _ 281097320777293 887319825715670783
8 15 225 165375 694575
E 0 13931542792 0 29170111094091269344
10 225 30375

L = Qo (Z +vV—-27) with Q, &~ —0.173822480149928796548653183122i. We consider m = 60;.

) n ” s e
Ey 3172750 1342358562500 5859740610595375000 8224911586379185906250000

Eg 3200533000 5821228519274000000 9662470329903512206120000000 1638125660170717:

Eg 4320809587500 8153357340912439556250000 16376688311616507014921415796875000000 32998281437217320249737406291129961914062500000000

Exo 4619340923750000 | 11544491321704145 276! 3198713600: 56503257 5 21050697251

L=0Q,(Z +1+T‘/j‘°’ Z) with Q. =~ 2.10327315798818139176252861858—1.21432532394379080590997084489;.
We consider m = 60y

QV=3) P D2 D3 D4
Fa 0 0 311811 0
Eg 1333 310739 W W
Es 0 0 5490112141200 0
Euo 0 0 1250350064581656 0

L = Qoo (Z+77 7) with Qo & 0.249589467962725575672578641846. We consider m = 60

QW) »n P2 ) s
Ey 679875 199394015625 —T4081487057046875 2526 22103744140625
E — 440889750 73646077235062500 —14326041813 5000 277464284: 1530742006250000
Es —198404521875 250502106 627 —27738213015525972: 66796875 30948642432614993042488 12942047119140625
B -1 250 $318160331569824535351562500 —535530: 472 70703125000 34516736517162211582565451163798220306959533691406250000
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CHAPTER 4

Coleman Theory

4.1 Coleman power series

In the first chapter, we have studied the properties of the tower field K, and F, generated
from K adding the p and p-torsion point of the elliptic curve associated to K in complete anal-
ogy with the cyclotomic tower Q(gp). The theta function has given us a way to construct a
sequence of norm-coherent units in the elliptic tower field. We will now study the construction
of the canonical interpolation series for norm-compatible systems of elements in these towers.
In 1977, Coates and Wiles [CW77] constructed ad hoc a particular series for the quadratic imag-
inary case and elliptic units. A few years later, Coleman [Col79] found a conceptual proof that
is valid for arbitrary Lubin-Tate groups. An extensive treatment of the cyclotomic case can be
found in [CS06].

4.1.1 General results

Let K be a fixed local field, and let Ok be the ring of integers of K. Fix a uniformizer 7 of Ox
and let F' be a Lubin-Tate formal group with endomorphism ring Ok. For b € Ok we write [b]
for the endomorphism of F' given by b, and A,, for the kernel of the endomorphism [7"!]. Now
take H to be a complete, unramified extension of K and let ¢ be the Frobenius automorphism
of H/K. We define the tower of fields

When m > n we write Ny, ,, for the norm map from H,, to H,. Fix a generator v = (v,,)
of the Tate module @An as an O — module, i.e., v, generates A, as an Ok module and
[7](vn41) = vy, for each n > 0. Let Op be the ring of integers of H. For brevity, we will write

O,, the ring of integers of H,, and with p,, its maximal ideal.

Theorem 4.1. Let o = () be an element of Jim H where the limit is taken with respect to the norm

maps. Then there exists a unique power series co(T') in O ((T')) satisfying

—n

c? (vy) = an
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foralln > 0.

Proof. See [Col79]. O

Corollary 4.1.1. Let o, o’ be elements of lim H¥. Then the following properties hold

(i)
(ii)
(iii)
(iv)

Proof.

(if)

(iif)

(iv)

Caa’ = CaCal,
g ([7(T) = ITxen, calTTHN),
ca(0)179"" = Ny, 1 (n),
ifo € Gal(Hw/H) and k(o) € O defined in Theoremthen we have
Co(a) = Ca © [K(9)]5-
(i) Observe that for every n > 0 we have
(caca)? " (vn) = & " (Un)cf, " (vn) = ana,.

By uniqueness of the Coleman power series stated in the previous theorem we have cyo =

CaCqt -
Observe that for every n > 1 we have
Qp—1 = Nn,n—lan = H Ca(vn)T = H Ca(’l);g).
T€Gal(Hy/Hp—-1) T€Gal(Hy/Hp—1)

Since Gal(H;/H;_1) acts transitively on the elements of A; — A;_;, we deduce that the

right-hand side of the previous equation coincides with

H Co(Vn[+]N).

AEAo

Let g(T') = c£([7](T)), then we have for every n > 0

([m)(vn)) = &

By the uniqueness of the Coleman power series stated in the previous theorem we have

(1) = [T calT+IN).

AEA;

—n —n+1

g1
g% (vn) =cf !

(Un—l) = Qp—1-

Evaluating the equality (ii) in 0 we obtain

c£(0) = [T ca(h) = cal0) - Nizyy(ca(vo)) = ca(0) - Npzy (o).
AEAg

Recall from Theorem 2.3 we have that for 7 € Gal(Ho/H) there exists k(1) € O such
that \™ = [k(7)]X for every A € A. In particular, from the definition of the Coleman power

series we have for every n > 0
T(an) = 7(ca(vn)) = calvy,) = ca([k(T)]vn).

By uniqueness we conclude ¢, (,) = cq © [k(T)].
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Observe that by uniqueness we have that the Coleman power series associated with 1 € U is

¢1(T) = 1. In particular, by the previous corollary, point (ii), we deduce
1=c1 =cqcy—1

and then ¢, is a unit in Oy [[T]].

4.1.2 Norm coherent units in U

In Section [2.2] we have studied the structure of the extensions of K with elliptic torsion points,
recall that we have
Fm = K(Efnl«l»l), Kn,m :Fnl,(ETr”)

and we have fixed the completions =, ,,, ., of K, ,,, and ®,,, ,, of F;, at the prime w above p. We

denoted R, ., the ring of integers of ®,,, ..

We have denoted by Uj, ,, , the units of =, ,, , and U, ,,, = [[,, U,
taken over the set of primes w of F},, lying above p. The multiplicative groups of units are given

by

where the product is

,mL,w

UL, =m0}, Use = limUp

where the projective limit is taken with respect to the norm maps on the =, ,,,. As before we
denote by ¢ the Frobenius automorphism of the unramified extension F,,,/ K. Let T; denote the
Tate module lim E,n+1, where the limit is taken relative to the usual projection maps given by
multiplication by powers of 7. We fix a generator u = (u,,) as O, module of T, i.e [7](up41) =

uy,. We can for example fix u,, to be £(Quoo/7™) = —20(Qoo/7™) /0" (Qoo /7).
By the final remark in Section the elliptic curve law defines a Lubin-Tate formal group

over K, then we can rewrite the previous results as follows.

Theorem 4.2. Let 8 = (B, m,w) be an element of U’ . Then for each integer m > 0 and each prime w

of Fy, lying above p, there exists a unique power series ¢y, ., 3(T) € R w[[T] satisfying

"

Cm,w,,@ (u") = 5n,m,w

for all n > 0. Furthermore, we have the following properties

1) Cmw B8 = Cmow,BCmw,p', for every B, 5" € UL,
i) ¢, o p([TNT) = I, e, emwps(TlHN)

i) Cmw,s(0)' "% = Nk, .5 (Bim).
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We will denote ¢, 3 = (¢mw,8)w € [, Rmwl[T]] = Rum[[T]] the collection of power series for

each prime w of F;, lying above p.

The previous theorem gives us the existence of the power series c,, for the tower field above

F,,. The following result shows the norm relation between the ¢,,’s.

Lemma 4.1.1. For m’ > mand ' a prime of F,,s lying above the prime w of F,,,, let Ny, ., denote the

norm map from R, [[T]] to R, [[T]]. Then we have the following identity
cm,8(T) = Ny m (e (1))

Proof. First of all, denoting N, . the norm map from =,, o/ t0 =y, 1 ., the structure of Ul
implies the identity
T N3 o Brnrir) = Brm

w’|w

for every n > 0. In particular, we can write

n " o
H Nm’ym(cm’,w’,[i(vn)) = ﬁn,m,w-
w’|w
Since v, € Ey, m w and ¢, . g has coefficients in R,/ .» we deduce that the norm map acts as

follows -

%)

H H Cfn’,w/,ﬁ (vn) = Bn,m,,w-

ww \e€Gal(®,,/ ,//Pm,w)

From the uniqueness of the Coleman power series, we conclude
cm,8(T) = Ny m(cmr (T)).

O

Recall that the logarithm map A(T') associated with E formal group has the property that \'(T)
is a unit in the ring Z, [[T]. Furthermore, from the remark of Corollary Cm.w.p(T) is a unit
in Ry, o[[T]]. The following definition introduces the logarithmic derivative of the Coleman

power series

Definition 4.1. We denote by g,,, g(T') the element of R, [[T]] whose w-component (g, 5(T))., is given
by

. d
Imwp(T) = N(T) 1@ 1og ¢ w,p(T)

and it is the logarithmic derivative of the Coleman power series.

Observe that if 8 = (8,,mw) € UL, then we can canonically write using the Teichmuller char-

acter

6n,m7w = Wn,m,w (ﬁ) <6n,m,w>

where (5, m..) belongs to U, ., ., and wy, m, ., (8) is a root of unity in =, ,, ... By the multiplica-

tivity of the Teichmuller character, we have (5) = ((Bn,mw)) € Uso-
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Lemma 4.1.2. For every 8 = (Bn,m.w) € UL, we have
Im.p(T) = gm.(5)(T)-

Proof. By Proposition we have that =, ,, ., is totally ramified over ®,, .,. In particular we
have wy, m,w(8) € ®m . The Coleman power series for each pair m and w is then given by the
constant series wo,m,w () € Rum.w[[T]]- By Corollary .1.7] we can write

Cm,w,[ﬂ(T) = Wo,m,w (ﬂ) : Cm,w,(,ﬁ)(T)-

Since wy,m . is a root of unity, we have

log ¢ w,8(T) = 10g Cpy 0,8y (T')
and then applying the definition of g,, 3 we obtain the identity. O

Lemma 4.1.3. Let m' > m > 0and let Try, ., denote the trace map from R, [[T]] to Ry, [[T]]. Then
for each 8 € Ul we have

9m,B (T) =Trm m (gm/,ﬁ (T))
and g, g satisfies the functional equation
79 s (TT) = gm,p(T[+]n).
nEE,

Proof. Recall that from Lemma we have

emws(T) =[] 11 o 5(T).
Wlwo€Gal(®,,r 1 [ Pm,w)
Applying the logarithm map and observing that the Galois action commutes with it we deduce
IOg Cm,w,ﬂ(T) = Z Z (IOg Cm’,w/,ﬁ)a(T)'
w'lwoeGal(®,,/ o/ Pm,w)
The identity follows from the definition of g, ..

We have A(T[+]n) = M(T) + A(n) = M(T) and hence d/dT\(T[+]n) = N(T) for all n € E,. Thus

d

e (T1410) = (AT 5 0gen s (T =

. d
= A/(71) 1@ IOg Cm,w,B(T[+]n)

From Theorem .2l we have

(s o TNT) = T emws(Tl+10)
and then from the previous equality

_ d
>~ G s (TN = N(D)71 Y 108 eonws(T[+]0) =
7]61::}7r neE‘ﬂ

. d

= \(T) 7T log(cy, 5 [7])-
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On the other hand, since A\([#]T) = 7 A(T) we deduce

(000 ) = (AT ) - Sdon(ch o ) =
—1y7 d
= \(1T)! T log(cy, ., 50 [7])-

Combining the two equations we conclude

ngg Z gmﬁ

nGE

O

In the following lemma, we see how the Galois action on the system of units acts on the Cole-

man power series and its logarithmic derivative by formal multiplication.

Lemma 4.1.4. Let 3 € U/ and m > 0, then for every o € G and n > 0 we have

Cm,pr = 5 ([k1(2))(T)),
gm.po = k1(9) g, 5([k1(0)](T)).

Proof. First of all recall that by Theorem [2.6|and Theorem 2.3 we have

= [k1 (o)) (un)-

Then consider the power series d(T') = ¢, 5, ([k1(0)](T)) € R [[T]] and we have

4" (un) = ¢, 57, (Ika (0)] (un)) = (¢, 5, (un))” = B

By uniqueness of the Coleman power series we conclude ¢, g o = dp,. By definition of g, g

we have d
Gm oo (T) = N(T) 7' = (log ¢, g o, (k1 (0))(T)))
while
im0 (R (@)(T)) = N ([F1 (o)) (T ))% (log e, .o, ([k1 (0))(T)) =
= k(o) NT) - (log ¢ ([l ())(T).
Combining the two equations we conclude g, 5o = k1(0)gy, 5([k1(0)](T)). O

Recall that we wrote R,,, = [], R and write @1 R, for the projective limit of the rings R,
relative to the trace maps. We also put Roc = U,,>¢ R and denote the completion of R by

Roo-
Theorem 4.3. Let b € Hm R, Then there is a unique power series hy(T') € Roo[[T]] such that

ho(T) = (0 ) mp, (L+ T2 mod ((1+T)P"" —1) 4.1)
c€Gal(Fp,/K)

forall m > 0. Where (b%)y, ,, denotes the p,,-component of the projection onto R, of the image of b

under the action of any element of G, whose restriction to F, is o.
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Proof. First of all observe that by Lemma [2.2.6lwe have that if 6 € Gal(K/K) is trivial on F,,,
then k2(#) = 1 mod p™+?, and hence (1 + T)*2(%) is well defined modulo ((1+ T)?""" — 1) for
all 0 € Gal(F,,/K). Let m' > m, then by the trace compatibility of an element of mRm we
have

G = D O

0€Gal(F,, | K)

m
9| Fm =0

Consequently we deduce

m—+1

S O, (L T)2O = (67),0, (1 4+ T)F) mod ((1+T)"

9€Gal(F,, /K)
0lr,, =0

~1).

Calling A, ,(T) the right hand side of (1), by completeness of R, we conclude the sequence
Bm(T') converges in R [[T]]. O

Definition 4.2. Let b € l'Lan and j < 0, we define

((1 + T)d(;) - ho(T')

Lemma 4.1.5. Let b € I'&an and j < 0, then we have

5;(b) = Z k2 (o) (b7 )m.p,, mod pmtl
c€Gal(F /K)

5;(b) = € Reo.

|T=0

where po, is the maximal ideal of Reo.

Proof. By we have that for every m > 0 there exists f(T) € Roo[[T]] such that

m—+1
W)= Y (0 mpn L+ D)2+ f(T) - (1 +T)7
0€Gal(Fm/K)

—1).

To prove the congruence we proceed by induction on —j. Applying the derivation (1 +T")d/dT
we obtain
d a (o2
(4D ) w0 = X g al)1+ T

oc€Gal(Fp,/K)
+1

(AT @A+ TP = 1)+ p™ () + T
Suppose now that for j < 0 we have
d —Jj+1 .
(+Df) O = X @) IO
oc€Gal(Fp,/K)

F (M)A + TP = 1)+ p™Flgo(T)

with g1 (T), g2(T) € Roo[[T]]. Applying the derivation (1 + T)d/dT we obtain

(1+D55) D= 5 @)upkale) 0+ DO

oc€Gal(Fp,/K)
T+ A+ M@+ — 1)+
+ ™ g (T)(1+ TP + p™Flgh(T)

+
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We conclude that for every j < 0 we have

((1+T)d>jhb(T)E > (5 mpnka(0) (14 T)7) mod pIt.

dT
c€Gal(Fn /K)

4.1.3 Power series g3(7',1s)

In the previous section, we have studied the construction of the power series for norm-coherent
system of units. We will see how these series allow us to construct p-adic measures to inter-
polate some L-values. In the work of Iwasawa [Iwa69] for the cyclotomic case and Coates
and Wiles [CW77] for the quadratic imaginary, they constructed the theory for one variable L-
function. Yager [Yag82] discovered that in the case of K quadratic imaginary, it is possible to
construct a richer measure with a two variable dependence. To do this we need to enlarge the

Coleman power series to a two variable type that will contain the information of the collection
(m )m-

Theorem 4.4. For each 3 € U’ there is a unique power series gs(Ty, Tz) € Roo[[T1, To]] such that
m+1

BT = S (s (1+ T2 mod (14T
oc€Gal(Fp, /K)

_1)

for all m > 0. Moreover, gg satisfies the functional equation

nga([r]Tr, (14 To)2 7" — 1) = 37 ga(T1[+]n, Tz)
nek,

and for every o € G
950 (T1,T2) = k1(0)gs [k (0))(T1), (1 + o))" — 1),

Proof. Recall that by Lemma for m" > m we have g5 = T7w m(gm 5). From the
proof of Theorem 4.3 we deduce the existence and uniqueness of the power series g3 (711, T2) €
Reoo[[T1, T2]).In particular for m > 0 there exists f € Roo[[T1, T2]] such that

(LT = Y (g (), (14 T)M) + f(TL ) (L 4+ T = 1)
oc€Gal(Fp/K)

and then we have

gs([m]T1, (1 + Ty)R= )™ — 1) = > (95, 6 ([F1T1))p,, (1 + Tp)F(e™ )4
o€Gal(Fm/K)

—1, m+1
+ fi(T1, To) (1 + To)kte) 7™ 1)

where f1(T1,T5) = f([7]T1, (1 + Tg)kz(v’)_1 —1). In particular, we have

gs([T] Ty, (1 + Tp)*2) " —1) > (nfs(RT))p,, (1 + Ty)k=()

c€Gal(Fp,/K)
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modulo ((1+7T)?""" —1). Now, Lemma shows that for all 0 € Gal(F,,,/K),

7 (gnls(TT))p, = Y (95 5(Ta[+0))p,0
nEL,

and so

-1
gs([7ITy, (1 + To)H —1) = - > (95 5(Ta[+]n))p,, (1 + Tp)k2()
0€Gal(Fm/K) ne by

m+1

modulo ((1 4 T)?™"" —1). Observe that for € £, we have

gl T) = Y (g5 s(Ti[+)p,, (1 + o)k
c€Gal(Fm/K)

m+1

modulo ((1+7)?"  — 1). The two equivalences give us the equation

mgp([m Ty, (1 4+ To)"O 7 — 1) = >~ ga(Ta[+]n, T2).
n€L,

For the second equality, recalling Lemma we observe

gpe (T1,12) = Z (99, = (T1))p,,. (1 + T2)*>® =
0eGal(Fo /K)

S @)gg sk (@)](T1)),, (1 + T)H) =
0€Gal(Fp/K)

-1
=ki(o) D> (g e (1), 1+ To)k2 0
0€Gal(Fp | K)

modulo ((14+73)”""" ~1). Comparing the previous equation with the definition of g ([k1 ()] (T1), (1+
T)*(e™") — 1) we prove the equality

95 (T4, T) = ka(0)gs (k1 (0)](T1), (1 + To)R " — 1),

Definition 4.3. Let k > 1 and j < 0. We define for each § € Us,,

(mw;‘ﬂ)’” (a +Tz>>;}2)j g5(Th, To)

Lemma 4.1.6. Let k > 1and j < 0. Then 6y, ; is a homomorphism of Z,-modules from U, to R for
all B € Uy and all o € G,

0k, (B) =

‘ (Tl ’T2):(0’0)

01, (B7) = k1(0) ka (o) 6.5(B)- (4.2)

Let UL the Z,|A]-submodule of Uy, where A acts via ' x2. If B € Ul then 8 (B) =0
unless (k‘,]) = (7;172'2) mod (p — 1), and th(Tl,TQ) €A,

S, (M(T1, T)B) = h(u* — 1,47 — 1)k ;(B) (4.3)

where w is the topological generator of 1 + p Z,,.
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Proof. First of all, by Theorem 4.2} for every 81, 82 € Us we have that ¢ g, ,(T) = ¢ s, (T) -

Cm,3o(T)- In particular, from the definition of g, s we get

9m,B1 82 (T) = 9m,p (T) + Gm,Bs (T)

and consequently

98182 (TlaT2) =95 (T17T2) + 98, (Tl’T2)'

By linearity of the derivation operator, we conclude dy, ; is a homomorphism. In order to prove

equation we use Theorem

(X(T)-laaﬂ)“ (a +T2))66T2>j 93 (T3, T3)

k—1 —j )
(v ) (a4 mgn)  Bl@esh@Im), 0+ T —1>]

ok (B7) =

‘ (Tl 7T2):(0’0)

[(Ty,T2)=(0,0)

. o k—1 P —j »
= [kl(a)k ()‘/(T) 16T1> ((1 + T2))6T2> gﬁ(Tl, (1 + Tg)k2(g) — 1)‘| =
[([k1(0)](T1),T2)

_ [kl(a)kkg(o)j (X(T)lleY_l (a +T2>>;}B>_j 95(11. T2)

|([k1 (0)](T1),(14Ty)k2() ™1 1)

from which observing that ([k1(¢)](0), (1 + 0)k2(2)™" — 1) = (0,0) we conclude
Sk, (B7) = k1(0)*ka(0)? 01,5 (). (44)

Let 3 € U™, then for every o € A we have 37 = x1(0)"x2(0)23. From the previous
equality, we then get

x1(0) x2(0) 2615 (B) = 0k,;(B7) = k1(0)ka(0)? 61,5 (B)

where in Sectionwe defined x1 = kyja, X2 = k2ja and then dx ;(3) = 0 unless (k,j) =
(i1,32) mod (p — 1). To conclude, recall that we have 71,72 € T such that (k1, k2)(11) = (u,1)
and (k1, k2)(72) = (1,u) with u topological generator of (1+pZ,)* and A acts as (1+7;)8 = .08
fori =1,2and 8 € Uy. Then we have

O (L +T1)"B) = 61,3 (B7) = ka (47 k2 (1) 81,5 () = uM8(k, 5)(B)
and analogous for (1 + T5). By linearity and continuity, we conclude
O (W(T1, T2) B) = h(u® — 1,07 —1)dy(B)-

O

To conclude this section, the following lemma establishes the connection between the differen-
tial operators §; of definition[#.2Jand 6y ; of definition[4.3] In particular, it relates the differentials

of the 1 variable power series and the two variable one.
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Lemma 4.1.7. Let 8 € Uy, and consider

1

ai(8) = [(V(D) " d/dT) " g p(T)] € Ron.

|T=0

It satisfies the equation

Ok, (B) = d;(dr(B))

and the congruence

GiB)= " Y. k20)(di(B)mp, modpLt.

oc€Gal(Fp, /K)

Proof. From the definition of the power series h;(T") we have

hapy = D0 (@B mp (14 T2)() =
0€Gal(Fm /K)
= Z [(A/(Tl)fld/dTl)k'—l gfn”g’pm] (1+T2)k2(0')
c€Gal(Fp /K) T2 =0
m—+1

modulo ((1 + T3)?
Or.;(B) = 6;(dk(B)). By Lemma[t.1.5we conclude

— 1). From the previous congruence and the definition of §; we observe

0rg(B) =i de(B) = D k(o) (dk(B) mip, mod L.

oc€Gal(Fy /K)

4.2 Coleman power series for elliptic units

In Section we have defined the elliptic units as special values of the theta function. In
particular CJ, , is the subgroup of the units of K, , generated by ©(el"*'7,, + py,; ) for all
p € S. In Corollary we have defined a collection of norm-coherent elliptic units

—-n
67),,m (l‘l’) = A'rf’L (Z; :u’)|z:511l+17'n

with (e, (1)) € Ul. Let Py(2) € F,,[[2]] be the Laurent expansion of A, (7~ (™*V2; u). By

abuse of notation we will denote
A (@ TINT); 1) = P (MT))

where ) is the usual formal logarithm map. We can then finally apply the Coleman theory

developed before to the system of elliptic units.

Theorem 4.5. Let i € S. Then the Coleman power series cp, c(u)(T) € R [[T]] attached to e(pu) is
given by
Cme() (T) = A (T FONT); ) (4.5)

where \(T) is the formal logarithm of E.
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Proof. First of all, recall that by construction we have
[ﬁ_(mﬂ)]un =e(e™r,)

then it follows

—n n

A (f_(m+1))\(un)§ n) = Aﬁ: (Z§M)|Z:g;"+1-,— = en,m ()

since ) is the inverse of the formal exponential map ¢. By the uniqueness of the Coleman power

series, we conclude the proof. O

By the definition of the logarithmic derivative of the Coleman power series 4.1 we then have

. d ——(m
Gmc()(T) = N (T) ! <5 log A (T " FUN(T); ).

Furthermore, the two variable function g.,) (7%, T2) is then given by

m—+1

9ew (T T2) = Y (95 e(o(T))p,. (1 +T2)*) mod ((1+T5)P" —1)
oc€Gal(Fp, /K)
forallm > 0.
Recall thatif b € m R, and j < 0 we have defined the two differential operators
d\™’ .
550 = (1 +D)71) W(Tlir—o € R
a k—1 a —J
S jle(n) = [( N(T) ' 5+ A+T2) 57 ) Ge(uy(T1,T2)
8T1 aTQ
‘(Tl 1T2)=(070)
Prop. 4.2.1. There exists an isomorphism of formal groups defined over R,
n: E — Gm

S n(S) = QpS + -+ € Rao[[S]]

satisfying
Qoo Qoo —n+1 Qoo
1+77 (5 (7-(-'”"!‘1)) = <7Tn+1a€n 7_(_n+1)n (46)

where (,),, denotes the Weil pairing of the p"*'-division points of L. In particular, Q, is a unit in R

and uniquely determined by the choice of the embedding of the fields K, p, in =y, m.

Proof. Firstof all, since E is a formal group of height 1, Lubin [Lub64] proved that there exists an
isomorphism between E and G,,. In particular, Tate [Tat67] has shown that we have a natural

isomorphism between the isomorphism group of p-divisible groups and their Tate-modules
Hom(E,G,,) = Hom(lim E[r" 1, W gini1).

The Weil pairing shows that H om(@ E[n"H], W fiyn1 ) is naturally isomorphic to lim E [Fn L.
Recall that we fixed €,, € Ok such that e, 7 =1 mod p"*!. Then we consider the isomorphism

n: E — G,, associated to (¢, 10, /7"*") obtaining

Qoo Do _nr1 Do
1+77<5 (Wm-l)) = <ﬂ.n+1’€n 7Tn+1)n‘
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Since n(S) = Q,S5 +- - - is an isomorphism, then we have Q, is a unit in Reo. In particular, since
G, is isomorphic to G, we deduce by definition of the logarithm map A that 7 has a series

expansion of the form
n(S) = exp(QA(S)) — 1.

Theorem 4.6. Let ;1 € S and let k, j be integers such that k > —j > 0. Then

Ok ({e()) =12(=1) 177 (ks = )15 > p(a)(Na — 0¥ ()¢ (a))

ael
—k—j ,_ -
v (p) 2\ ik R
(1 Ny )(\/@) D LR

Proof. The proof is based on Katz formulae [Kat76] and can be read in full detail in Yager’s
paper [Yag82] Theorem 15. O
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p-adic Interpolation

5.1 Two variable p-adic measures

5.1.1 Basic results on power series

Lemma 5.1.1 (Division algorithm). Let A a complete valuation ring with m maximal ideal and residue
field of characteristic p. Let A = A[[Th, - ,T,]], g € Aand f; € A[[T;]] such that f; ¢ mA[[T;]] for
i=1,...,n. Let m; the largest integer such that f; € mA + (T;""). Then

QZQ1f1+"'ann+7' (51)

withg; € Aandr € A[Th,...,Ty).

Proof. Let u; € A* the coefficient of T, in f; i.e. f; is of the form f; = a;7;™ + b; with
b € mA[Ty,...,T,] and a; € A such thata; =« mod degl. In particular, we have a; € A*. Let
qo,; € Aand 7o € A[T1,...,T,] such that

9=a0,T7" + -+ 90, T +7o.
Taking qo; = a; 1‘16.¢ we can rewrite
g=gqo10T7" + -+ qonanTy ™ + 1.
Since f; = a;7; mod mA we deduce
9=qoafi+ -+ qonfn+ro mod mA.

Consider now g1 = g —qo,1f1 — -+ qo.nfn — o € mA and repeat the procedure finding ¢; ; € A
such that

G =qafi+ o+ q@afa+r mod m’A.

In this way, we obtain the following congruence
9= (o1 +q) i+ + (Gn1+qn1)fa+ (ro+71) mod m?A.
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Iterating this argument we define ¢; = qo; +qi1; +---,r =ro+ 11+ --- fori = 1,...,n that

satisfy the equality
g=qfi+ - t+anfatr

Observe that by construction we have that the maximal exponent of 7} in r is less than m,;. O

Definition 5.1. A distinguished polynomial p € A[T)] is a polynomial with leading coefficient 1 and
such that p = TP mod mA[T].

Theorem 5.1 (Weierstrass preparation). Let g € A[[T]] be a power series such that g ¢ mA[[T]].
Then there exists a unique distinguished polynomial p € A[T| and a unit uw € A[[T]]* such that

g = up.

Proof. Let n > 0 be an integer such that ¢ € mA[[T]] + (T") and denote uy € A[[T]]* the
coefficient of 7" in g. Applying the division algorithm, we obtain a unique ¢ € A[[T]] and
r € mA[T] with degr < n such that

" =qg +r.

Consider f = T™ — r and observe f is a distinguished polynomial. Furthermore, quy = 1

mod degT and then ¢ is a unit in A[[T"]]. We conclude

g=(T"-r)g " = fu.

Corollary 5.1.1. Let A be a PID ring. Then A[[T]] is a unique factorization domain.

Proof. Consider m € A such that m = (7). For every g € A[[T]] there exists n > 0 such that
g™ & mA[[T]]. By Weierstrass preparation theorem there exists p € A[T] and u € A[[T]]*
such that

g =T7"pu.
By the uniqueness of the factorization of p in A[T] we conclude that g uniquely decomposes in

A[[T]). O

Lemma 5.1.2. Suppose that a p prime number lies in m. Let h € A[[T1, T»]] be a power series, then for
every n > 0 there exists by j € Afork,j =1,...p" — 1 such that we have a unique decomposition
p'—1

WTLTo) = ) bey(L+ T L+ 1) mod ((L+ T — 1, (1+ 1) —1).
k,j=1

Proof. Observe that ((1 4 T;)?" — 1) € mA[[T]] + (T7 "), then by the division algorithm we can

write
MT, To) = qu(Th, To) (1 4+ T1)P" = 1) + qo(T1, To) (1 4 To)P" = 1) + r(T1, Tb)
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for ¢; € A[[T;]] and r € A[T},T5] of degree less then n in both T)s. Define b ; € A to be the
coefficients of the polynomial r(Th — 1,75 — 1)

pt—1
r(Ty —1,Ty, — 1) Z by TFTY.
k.j=0
We then conclude
pt—1
WTy, Ty) = r(Ty, Ty) = Z br;(1+T)* (1 +Ty)’ mod (1+T)P" —1,(1+To)"" —1).
k.j=1

5.1.2 [I'-transform

Definition 5.2. Let k > 0 be an integer and define the binomial coefficient function <z) $ Ly — L to
be

N\ _ z(x—1)---(x—-k+1)
k k! ’

Definition 5.3. Let u be a measure on Z, x Z, with values in A. Then we define the power series
fu € A[[Th, T>]] associated to u as follows

i n%‘;o </Z (3;1> (i’i) dWla@)) Ty =

= /22 (1+T7)" (1 + To)*2du(zy, x2) (5.2)

fu(TlaTQ

~—

Conversely, given f € A[[T},T>]] we would like to associate a unique A-valued measure on s
to which it corresponds under equation By Lemma we can write

pt—1
(T To) = > b1+ T)F(1+ o) mod (1+ TP —1,(1+Tp)” —1).
k,7=0

The following Lemma will give the construction for the measure (.

Lemma 5.1.3. Let f € A[[Ty,T>]] be a power series. Then there exists a unique measure p for which
/ dp = by ;. (5.3)
(k+p™ Zp) X (j+p" Zp)

In particular, we obtain f, = f.

Proof. In order to define a measure ;1 from a map from the open sets (k + p" Z,) x (j + p" Zp)

to Z, to A we need to verify that it satisfies the distribution relation

p—1

p((k+p" Zp) x (41" Zp) = > p((k+rp" +p" ' Zy) x (G + sp™ + p" T Zy).

r,5=0
Comparing the two decompositions mod p” mod p"*!

pt—1
(T, Ty) = Z bej(1+T)*(1+T) mod (1+T1)P" —1,(1+ )P —1)

k,j=1
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prti_1
f(Th,Ts) = Z e, (1+ Tl)k(l + TQ)j mod ((1+ Tl)p’“r1 11+ T2>pn+1 _1)
k,j=1
we obtain the relation
p—1
bk,j(l + Tl)k(l + CZ-72)'7 = Z Ck+7‘p”,j+sp"(1 =+ Tl)k+Tp (]_ + T2)J+Sp
r,s=0
and in particular
p—1
ka = Z Ck+rpn j+spn-
r,s=0

We conclude p is an A-valued measure on Zf). We now need to show that f = py. From the
congruence of Lemma we have

p"—1 p"—1 kK J .

§ j E E k J s —
f(T1,Tz) Ek - 1bk7j(1 +T)F(1+ Ty = f 1bk=j ZO 0 <r> <8)T1 h=

J= J= r=0 s=

p"—1p"—1p"—1

=Y Y S by (’;) @T{T; mod (14717 — 1,1+ TP — 1).

k,j=1 r=0 s=0

On the other hand, recall that we can compute the value of the integral of a function ¢ on Zi

using the Riemann sums

[ o= 1 S ek (kP ) x (G + " T).
Ly (k+p™ Zp) % (j+p" Zp)

In particular we obtain

/

We then conclude f,, = f. O

() (a=pm (O

2
P (k+p™ Zp) X (§+p™ Zp)

Definition 5.4. Let x a unit in Z,, we write x = w(x)(x), where w(x) is the Teichmuller character
associated to x and (x) =1 mod p. Consider (i1,i2) € (Z /(p—1)Z) x (Z /(p — 1) Z) and f a power
series in A[[T]] corresponding to a measure py. We define the I-transform
(i1,i2) | 2
Lz, — A

by

D sse) = [ ) () o) ) dur (5.4)

Zy XLy

Definition 5.5. Let u be a topological generator of 1 + pZ,, then we can define a homomorphism

l:Z, — 7y such that

(a) = u'®
for every x € 7.

Lemma 5.1.4. Let f € A[[T1,T5]] be a power series and take (i1,i2) € Z /(p — 1) Z. Then there exists
fOi2) € A[[Ty, Ty]) such that for all sy, sy € Z,, we have

D) (51, 59) = FO02) (% — 1,02 — 1), (5.5)

62



CHAPTER 5: P-ADIC INTERPOLATION

Proof. By definition of  homomorphism and I'-transform we have

DD snsg) = [ (a1 - D o) o).

Ly XLy

Considering the binomial expansion of the right side we obtain

S e [ (") (152t o i

n,m>0

We can then define f(11:%2) € A[[Ty, T3]] taking the coefficients of T]T3" to be

/z; <z (l(il)) (l(qff ))wil(an)w” (w2)dpus.

O

On the ring of power series A[[T7, 1], we can consider the operator D; defined by (1+71;)9/97T;.

These operators will play a fundamental role in the interpolation property.

Lemma 5.1.5. Let p be a measure on Zf,. Then, for n,m > 0 consider the measures (i, ., corresponding

to the power series DY D3 f,, € A[[T1,T»]]. For all measurable functions ¢ : Zi — A we have the

following identity

/Z2 (w1, 22)dpin,m(T1, T2) :/ o(w1, 22) 2] T dpt.

2
p ZP

Proof. We proceed by induction. First of all, consider the measure p; o associated with the

power series D1 fu. Explicitly we have a ; € A such that

FulTTo) = > ap TETY
k,j>0

and applying D, operator we get
Dy fu(Ty, Ty) = (1 +T1) Z ka; TT T3 | = Z (kar,j + (k + V)ags1,;)TETS.
k,j>0 k,j>0
From equation5.2)applied to f, and D f,, we obtain

- 5 (1, ()

k,j=0

Difu(Ty,Tz) = ) (/Z?) (Zl) (332) dﬂm) ')

k,j=0

and then by previous computation

L) )mo=e(L(3)
- ()

2
p

(7)) (£, 2 )
(1) (e
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From the straightforward identity

k(”;l) Tkt 1)<ki1 1) =1 (if)
(o) (3 )amo = [ () (5 )

2
p

we conclude

/

Clearly, the case D, f, is completely symmetric. Consider now n > 1, m > 0 and suppose the
Lemma holds forn — 1. Let g = D{‘_ngnfﬂ, V = ln—1,m then we have D;g = DT D3 f and

/ ‘PVLO:/ 901'1”:/ (tpm)m?flxgbu:/ PHn,m-
Z z2 zZ z2

2
P
In particular we have v o = fin,m- Applying the first step for n = 1 we conclude D, g corre-

2
p

2
P
sponds to v o and then D} D3" f,, corresponds to (i, . The case m > 1 is analogous. O

Recall that a measure 1 is supported on a measurable subset B of ZIQ, if, for all measurable

/ w=/ @13ﬂ=/w«
72 z2 B

Lemma 5.1.6. Suppose f € A[[T1,Tz]] a power series corresponding to a measure [i; supported on
Ly X Ly. Let (i1,i2) € (Z/(p — 1) Z)* be a pair of integers modulo p — 1. Then, for each pair of
integers ki, ko > 0 such that (ky, ko) = (i1,42) mod (p — 1) we have

functions ¢ : Zf, — A we have

DY) (ky, ko) = (DY D £)(0,0). (5.6)
Proof. From the definition of the Teichmuller character, we have that for all (z1,z2) € Z; X Z;
eV ag? = (1) (@9) 2w (@1) w(wa) .
From the definition of the I'-transform we have

I

Zg ><Zz>)<

and then in particular, using the previous Lemma, we deduce

(i1,i2) _ x1 T2
Ly (k‘l,kz)—/ZXXZX <0>(0)dqu1D§2f
P P

where we have used the fact that the binomial function in 0 is the constant 1. From Definition[5.2]

of the associated power series to a measure, we conclude Fgfl’”) (k1, ko) = (DY D%2)(0,0). O
We conclude the section by giving the construction of the power series corresponding to the
restriction of a measure to Z, X Zj,.

Lemma 5.1.7. Let f € A[[T1,T5]] be a power series and consider

FTT) o= (T, T) = 30 (G0 +T1) = 1.

¢r=1
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where the sum on the right is taken over the set of all the p-roots of unity on A. Then f € A[[Ty, Ts]]

and for all measurable functions ¢ : Z?) — A,

Proof. First of all observe that for n > 0 and ¢(77,T%) = (1 + 171)P» — 1 we have
91 +T1) = 1,T5) = (1 +T1)" — 1 = g(T1, T2).

In particular, by Lemma we have

pt—1
F(Ty,Ty) = Zbk]1+T1 FA+Ty)7 mod (1+T)P" —1,(1+Tp)"" —1)
k,j=1
and then
p"— ) " N
fCA+T) - 1T3) = Z b CF(L+ 1)1+ 1) mod ((1+T7)" —1,(1+T2)” —1).
k,j=1

From the fact that > ¢ *is 0if (k,p) = 1 and 1 otherwise, we deduce that in the decomposition

p"—1
fTT) = Y a1+ T+ T2) mod (1+ 1) —1,(1+To)”" —1)
k,j=1

the coefficients ¢y, ; are

Ck,j =

0 if(kp) #1L

From the Lemma|5.1.3|we conclude that the measure 11 is supported on Ly X L. O

7/1712

5.2 Construction of Q

We will denote «(T) € R, the inverse of 7(T). Recall that gs(T}, T>) € R+, denotes the unique
two variable power series attached to an element 5 € Uy, defined in Theorem Then we

have the following result.

Lemma 5.2.1. Let 8 € U, and consider hg(Ty, To) = g5(t(T1), Tz) € Reo. The Roo-valuied measure
on Z2, corresponding to ha(Ty, T») is supported on Zy, x L.

Proof. By Theorem [4.4]we have

m+1

PTLT) = S (6 (T))p (L T)) mod ((1+T5)?
oc€Gal(Fp, /K)

_1).

Since k; take values in Z, then by Lemma we conclude hg(T1,T>) corresponds to a mea-

sure supported on Z, x Z, . O
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Recall that by Lemma we have that

- 1

hg(T1, Tz) = hp(Th, T2) — ’ > hs(C(1+Th) —1,T)
¢r=1

gives rise to a measure supported on Z, x Z, .

Lemma 5.2.2. Let k > —j > 0. For each § € Us, consider hs(Ty, Ts) € Roo[[Ti, To]]. Then we have
that

1], - v
DY D37 hg(Th, To)l 0,0y = " (1— ]\(fp)lj Ok.;(8)-

Proof. By construction we have ¢ o n(T) = T and n(T") = exp(Qu,A(T)) — 1. Then we deduce
7'(T) = exp(QpA(T))Q2p N (T) and so

1=4((T))n"(T) =/ (n(T))(1 +n(T)) 2N (T)

(M)A +n(T)) = (QuN(T)) 7"

From this, it follows that

d !
(1+T3) g1 1(T3) = |(@N (1) ™ D)
and in particular
- o\t
DY Dy hs(Th, o)l 0.0) = (QpX(T))_laT> Dy hs(n(T), T2)|0,0)- (5.7)

Recall that by definition of 75 we have
1
ho (D), T2) = hs (D), T2) = = >, ha(C(L+n(T) — 1, To).

In particular, since { — 1 is a point of order p on G,,, and ¢ is an isomorphism then ¢(¢ — 1) runs
over the solution the elements of E, as ¢ runs over the solution set of (?» = 1. Moreover, we

also have that

(€ =DHIT) = (=1 +n(T)+ (¢ = Dn(T) = C(1 +n(T)) -1

and so
hs(C(L+n(T)) = 1,T2) = hg(n(e(¢ = D[H]T), T2) = g5 (e(¢ — 1)[+]T, T2).

We conclude that

ho(n(T). T2) = 95(T. T2) = 3~ gs(T[+]n,To).

pPEEL
Using the functional equation of g3(T},T») described in Theorem [4.4) we can rewrite the previ-
ous equation
ha(n(T), T2) = ga(T, T2) = — gs ()T, (14 T5)"(2 " —1).
Recall that the Frobenius elements ¢ acts on Ez- via th(p) by definition of the Hecke character
then k2(p) = 7 by Lemma Notice that we have

U+ D) A+ = 1) =7 (4 W) A0 ) e
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Then combining all these facts we obtain that equation (5.7) becomes

DY D3 hg(T1, Ts) | 0,0) =

k—1
~ (@) gr) Dy (0T - Tas(T (04 T 1) oo =

0

_ol—k [ yrimy—-1_9
—Q! <)\(T) o7

k=1
) D37 gs(T,T2)|0,0)—

Lk (p) (xm‘laaT)kl Dy (95T 0+ T = 1)) 00

In particular, we have

0

(X(T)laT)k_1 Dy’ (913([7T]T1’ 1+T)" -~ 1)) l0,0) =

9 k-1 » ——1
=t (A’(T)_laT> Dy7gs(Ty, 1+ T2)" = Dlo,0) =

. 0

=gkl (X(T)— 57

k-1
) D57 g5(T1, %) 0,0)
that recombined together gives us
Dy Dy (T, To)l 0.0y =
ﬂ_k,j - B 8 k—1 iy
= <1 — pl—j> Q; k (}\/(T) 18T> D2 Jgg(T, T2)|(070).

By Definition[d.3]of 0y, j we conclude

. k—j
DY~ D37 ha(Ty, Ta) 0,0y = (1 - %*;)1_], ) 0 6r5(8)

O

In the case of the norm-coherent elliptic units e(x), using the results of Section[4.2]we then have

. k—j ) i
DY D b (T3, Tl oy = (1= Sy ) 120104447 = 1t S u(a)Na @7 (@)
—k—j — 1—j—k
Y (p) 2m ! i yi—k 7 k=i
(228 (25 i

Theorem 5.2. Let iy, iy be integers modulo (p — 1) and let 5 € Uso. Then there is a unique power series
GY ) (Th, Tz) € Roo|[Th, T]] such that for all k > —j > 0 satisfying (k,j) = (i1,i2) mod (p — 1),

ggl,zz)(uk _ Luj _ 1) — <1 _ 1?\(;;)1]_ ) Q;—kék,j(ﬂ)

Moreover, if h € A,
gfé’”)(ThTz) = h(Tl,Tg)gg“’”)(Tl,Tz).

Proof. First of all, observe that by Lemma and Lemma we have that h5 corresponds
to a measure supported on Z x Z. Then by Lemma5.1.6/we obtain

i1—1,—ia : ip-ii ()TN im
rgﬂ 'k —1,—5) = DI 1Dy hgl0.0) = (1— Npl Q7 6,5(B).
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On the other hand, Lemmashows that there exists a power series h(Zl L) e R [[T1, T»]]
such that for all s1, s2 € Zp,

Fg;_l’_h)(sth) = ﬁgl_l’_i2)(usl —1,u®7h).
We can then define g(“ 2) e R [Ty, Tz]] to be
G (T, Ty) = ST (W 1+ 1) — 1, (L Te) - 1),
Observe that then we have

e (T B § e A (L

(u
F(’Ll 1722)( 1 —J

k—j
_ (1 - 1?\(72)” ) QLF5, 5(8).

Let now h € A and applying equation (#.3) we deduce

‘ k—
Ghi st — 1wl —1) = <1 - 1/;\([1;)1 = > Q7 0k (W(T1, T2)B) =

=h(uf — 1,47 = 1) (1 — %?fj) Q" 65(8) =

= h(u* — 1,0/ — )G (uF — 1,07 —1).

By uniqueness of the power series ggi”'?) (T1,T>) we conclude

gl(z7l(1'1;2T2),8(T17T2) = h(T’hT‘Q)g(Z1 vi2) (Tl,Tg).

5.3 Interpolation of L-values

For k > —j > 0 we introduce for simplicity the following notation

TEH gy W (p)*H GEMIN (20 \ g
Loo(’(/} 7/€) = (1 - ij+1 ) (1 — Nﬁk ) (m) Qoo +3 L(w ,k)

Let € Z, and consider w : Z, — (Z/pZ)* the Teichmuller character, then we have z =

w(z)(x). Recall Definition 5.5 where for u topological generator of 1 4 pZ,, then we can define
a homorphism [ : Z — Z, such that

(2) = ul®
for every z € Z.

Definition 5.6. Let € S and i1, iy integers modulo p — 1, then we define

B (13, T2) = 3 (@) (Na— o (@) (3(0) (1 + T1)' 0 1+ T) )
acl
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Observe that with the previous definition we have for all (k1, k2) = (i1,72) mod (p — 1)

hl(jl,iQ)(ukl —1, uk? — 1) — Zu(a) (Na o (1/J(a))wi2 @(a))ukll(¢(a))uk2l@(a))> —

Lemma 5.3.1. Let H(+%2) to be the A-module generated by h,(fl’m (T, T>) for all p € S. Then we have

(i) HOO = (Ty, Ty)A,
() HOD = (T) +1 —u, Ty + 1 —u)A,

(iii) H%2) = Aif (i1,i2) # (0,0) and (i1,42) # (1,1) mod (p — 1).

Proof. Let a be an integer which has order (p — 1) in the group (Z /p* Z)*. Suppose firstly that

i1 £ i1 mod (p — 1). We want to construct an element p; € S such that hfff’iz) is a unit in A.

Let a1, g € O satisfying the following conditions
a; =1 mod fp, a1 =a mod p,
az =1 mod fp, as =a mod p

with a1, as coprime with each element of S. Then we have that a; = (a1), a2 = (a2) belong to
1. We define iy : I — Z by

m(al) = Nﬂ2 — 17
p1(az) =1 — Nay,
w1(a) =0, forall a+# ay,as.

Then observe we have

hit(0,0) = i (a) (Na — o™ ($(a)w™ (P(a))) =

acl
=(Naz — 1) (Nap — " (¢(a1))w™($(a1))) +
+ (1= Nay) (Naz — " (¢(az))w™ (¥(az)))
Recall that by definition of the Hecke character ¢ we have a multiplicative map from {5 €
O : (BO,f) = 1} to O* defined by ¢(5) = ¥(80)/5. By definition of the conductor, ¢ factors
through (O/f)*. We then conclude ¥ (a1) = a1, ¥(a2) = a2 since e(a1) = e(ag) = £(1). In

particular, we then deduce
W' (Y (ar))w™ (Y (ar)) = w' (ar)w™ (@1) = W' (ar)
W' (h(az))w™ (P(az)) = W (a2)w™ (@) = W' (az).
Considering hffll’“) (0,0) modulo p we get
h{12)(0,0) =(Naz — 1) (Nay — w®(@1)) + (1 — Nap) (Nag — w' (az)) =
=(a—1) (a— aiz) + (1 —a) (a—ail) =
= (a—1)(a™ —a™) mod p.
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Since i1 # i2 we conclude hl(ff’i2)(0, 0) is a unit. Hence in this case H("1+%2) = A.

Consider now the case i; = iy and i; # 0,1 mod p. Let a3, a4 € O satisfying the following

conditions
a3 =1 mod fp, a3 =a mod p,

ag =1 mod fp, ag=-—1 mod p
with as, a4 coprime with each element of S. Then we have that a3 = (a3), a4 = (a4) belong to
I. We define py : I — Z by

po(a) =0, forall a # ag, as.
By the analogous argument of the previous case, we get
hﬁ;’il)(ovo) =(Nas — 1) (Naz — w" (¢ (a3)i(as))) +
+ (1= Nag) (Nag — " ($(a1)9(a))) =
=(Nay — 1) (Naz — w" (a3)) + (1 — Naz) (Nag — w" (aa)) .
Considering hff,j’il) (0,0) modulo p we get
hszl’“)(o 0)=2(a" —1) modyp ifi; iseven,
h{110(0,0) = 2(a™ —a) modp ifi is odd.
Since i1 # 1,0 we conclude hﬁ;’il) is a unit in A and then H(1:71) = A,

It remains to study the cases (i1,i2) = (0,0) or (1,1) mod (p — 1). Observe firstly that for all
uwes,

= p(a)(Na—1) =0,

acl
hf}’l)(uf lu—1) Zu )(Na —(a)d(a) =
acl

We then deduce h\"""(Ty, Ty) € (T, To)A and b (T1, Ty) € (Ty — u+ 1, Ty — u + 1)A. Thus,
to prove the lemma it will suffice to show that H(*:9) contains T} and 7> and H*!) contains
T1 —u+1and 75 — u + 1. Observe that it is enough to produce elements that are congruent to
the claimed generators modulo (p2, (1 +T1)P — 1, (1 + T3)? — 1).

Let a5, ag € O satisfying the following conditions
as =1 mod fﬁQ, as =u  mod p?,
ag =1 mod fp, ag = au  mod p?
with a5, ag coprime with each element of S. Then we have that a5 = (as), ag = (ag) belong to
1. We define u3 : I — Z by
ps(as) = Nag — 1,
pn3(as) =1— Nas,
u3(a) =0, forall a# as,ag.
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Using the same arguments as before we get

B0 (Ty, Ty) =(Nag — 1) (Na5 — (14T )1+ T2)1<55>) +

+(1— Nas) (Na6 — (1 + 1)) (1 + TQ)“EG))
Considering hﬁ?;o) modulo ((1 4+ T1)P — 1, (1 + T2)? — 1) we obtain
ROOT, Ty) = (1 —a)uTy mod ((1+T1)P —1,(1+ Tp)P — 1).

and so H(%:%) contains an element congruent to 7; modulo ((1 + T3)? — 1,(1 + T3)? — 1). The
construction of an element congruent to 75 is completely symmetrical.
Let a7, ag € O satisfying the following conditions
ar =1 mod fp2, ar =u  mod EQ,
ag =1 mod fp?, ag =a mod ﬁQ
with a7, ag coprime with each element of S. Then we have that a; = (a7), ag = (ag) belong to
1. We define 4 : I — Z by
pa(ar) = Nag — 1,
u4(a8) =1- Na7,
pua(a) =0, forall a# ar,as.

Using the same arguments as before we get

BED(Ty, To) =(Nag — 1) (Nar - w(Nae) (1 +T3)/ (1 + 1)@ ) 4

+(1— Nay) (Na8 — w(Nag)(1 +Tp)He) (1 + Tg)l@))
Considering hf};l) modulo (p?, (1 +T1)P — 1, (1 + T2)? — 1) we obtain
I, )= (1 —a)(Te+1—u) mod (1+T1)" —1,(1+T2)P —1).

and so H"Y) contains an element congruent to 7o —u+ 1 modulo (p2, (1+T)? — 1, (1+T3)? —1).

The construction of an element congruent to 7} — u + 1 is completely symmetrical. O

Theorem 5.3. Let i1,iy be integers modulo p — 1. Then there is a power series Q(“@)(Tl,Tg) c

Rool[T1, T2]] such that, for all integers k1 > —ko > 0 and (k1, ko) = (i1,42) mod (p — 1),

—k1—ks2

Gori (uh — 1 uk — 1) = (b = DI L (P k)

Proof. Let u € S, consider the elliptic unit (e(1)) € Cs defined in Corollary then by

Theorem[5.2land Theorem (4.6l we have

k1—ko
) ¥ b () =

=Q k=R ()Mt =k (g — 1)1

7k1)-

Gletyy (@ = Louh 1) = (1 -

piviz (bt — 1,0k — 1) Lo (3
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Consider the power series g(11,T2) € Z,[[T1, T»]] defined by
9(T1, Tz) = 12(=1)+ 072w (£)(1 + T1)'.

In particular we have g(u*' — 1,u*2 — 1) = 12(=1)1**F1=k2 fkr whenever (k1,k2) = (i1,42)
mod (p — 1). Observe that g(T3,T%) is a unit in A since p is coprime with 12f. Consider then
WMTv,To) = g(Th, T2)h,(Th, T2) € A, we can rewrite the previous equation as

Gl (uh — 1, ufr 1) = h(uh — 1,0t — 1)QLE R (kg — WL @™ k).

If (i1,42) # (0,0),(1,1) mod (p — 1) then by the previous lemma there exists 1 € S such that
h,, is invertible. In this case, we consider 8 € Uy to be the unit given by h=* (T3, T2){e(u)), and
then by Theoremwe have that the value of the power series gg“’?) at (uhr — 1,uk2 — 1) is

gén,m)(ukl . 1,uk2 . 1) _ h_l(ukl - Lqu _ 1)952}3)2)) (ukl _ 1,uk2 _ 1) _
7k1)-

— QLR — D) Lo (T
It remains to study the cases (i1,42) = (0,0) and (i1,42) = (1,1) mod (p — 1).

Suppose (i1,i2) = (0,0) mod (p — 1). By the previous lemma we have H(®0 = (T}, Ty)A.
Let eg be the unit in D corresponding to the power series h,, = T» € H(?. We then have
00 (ki —1,0) = 0forallk; =0 mod (p— 1). In particular

Gir (T, T) = QTGO (T, T)
for some power series G(*) (T, T,). From the previous equation G(*:%) (T}, T3) has the desired

properties.

Suppose (i1,i2) = (1,1) mod (p—1). Let e; be the unit in D corresponding to the power series
he, =T1 +1—ue HLD We then have G (u—1,uf2 — 1) = 0 forall ky = 1 mod (p— 1). In
particular

GUI(T, Ty) = Qu(Th + 1 — w)G D (Ty, Tn)

for some power series GV (T, T,). From the previous equation G(1V)(Ty, T3) has the desired

properties. O
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Two variable theta function

6.1 Two variable Theta function

K. Bannai and S. Kobayashi [BK10] studied a particular type of two variable Theta function that
is the generating function for Eisenstein-Kronecker numbers. Through Mumford’s theory, they
reproved the algebraicity of these numbers and they constructed a p-adic measure using the

formal power series associated.

6.1.1 Definition and Laurent expansion

Recall that we previously defined the functions for a lattice L = wy Z+w2 Z

= I (-0 (G2 0))

Definition 6.1. We define the Kronecker theta function for L to be

o(z+w,L)

O(z,w, L) = exp (—s22w) oo Dol L)’

Prop. 6.1.1 (Transformation formula). For any v1,v2 € L we have

Oz 4w+ 7, L) = exp (}(f)) exp (W) Oz w, L), (61)

For any ¢ € C we have
1
O(cz,cw,cl) = E@(z,w,L) (6.2)

Lemma 6.1.1. Let f(z,w) = exp(2w/A)H1(z,w,1). Then this function satisfies the following prop-

erties

(i) f(z,w) satisfies the transformation formula (6.1),

(i) f(z,w) is a meromorphic function in z and w, holomorphic except simple poles when z € L or
welL,
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(iii) the residue of f(z,w) at z = 0 and w = 0 is equal to one.

Lemma 6.1.2. Any holomorphic function f(z,w) on C x C satisfying the transformation formula

f( i i )_ @ 20+ wu
z4+u,w+v) =exp 1 exp — 1

forany u,v € L is identically equal to zero.

Theorem 6.1 (Kronecker). The Kronecker theta function is related to the Eisenstein-Kronecker-Lerch

series as follows
2w
O(z,w) = exp <A) Hy(z,w,1).

In particular, the theta function ©(z, w) is holomorphic on C x C except for simple poles corresponding

to z € T or w € I. In particular exp(zw/A)H; (z,w, 1) has residue 1 along z = 0 and w = 0.

Proof. See [BK10].1.13. O

Definition 6.2. For any zy, wo € C we define the translated Kronecker theta function by

©0,wo (7, w, L) = exp <— IZ)(IZ(;) exp (—W) O(z + 2o, w + wo, L).

Lemma 6.1.3. For any zy,wo € Cand vy, € L we have that the translated Kronecker theta function

satisfies the following relation
620+'Y,wo+’y’ (Zv w, L) = <w0, 7>L®Zo,wo (Z’ w, L)' (63)
For any c € C we have

1
Oczp,cwo (€2, cw, cL) = =04 o (z,w, L). (6.4)
c

Proof. It follows by a straightforward computation. By definition and the transformation for-
mula we have that the left-hand side is

(o L~ /
@zoJr’Y,woJr"/'(Z?w) =eXp <_ (ZO ! ’Y)I(élwo = )> Y <_Z<w0 1 >Z w(zo - 7)>

O(z+ 20 + 7, w4 wo +7') =
(o L~ ’
e (_(Zo 7)o 7 >> exp (_Z(wo+7 ) +w(20+7)>

A A

P~ — —
exp (g) exp ((z + 20)7 ‘;(w —I—woW) Oz + 20, w + wp).

The right side is equal to

wWoy — YW 2ZoW 2Wo + Wz,
(W0, Y)O 24w (2, W) =exp <M> exp (— OA 0) exp (—OO> O(z + zp, w + wp).

A A
Comparing the exponential factor we conclude the desired equation.
For the homothety relation observe that we have

CzpCWy czcwg + cwezy

Oz, cwo (€2, cw, cL) = exp <_A(CL)> exp <_A(CL)) O(cz + czp, cw + cwy, cL)
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and using the fact that A(cL) = NcA(L) and the homothety relation we conclude

1
Oczp,cwo (€2, cw, cL) = =04 o (z,w, L).
c

Lemma 6.1.4. For any vy € L, we have

. B 7 —-w)w
zahj}}ﬂ(z +u—7)Ouy,p (2, w) = (v,7) exp <A

- . )
w—ll—nih—’y(w +v— 7)®u,'u(za U)) - <ua Y- U> €xXp <A>

Proof. This follows from direct calculations applying Kronecker’s theorem. In fact we have

Ou,v(z,w) =exp (—ﬁ) exp (_zv—f—Awu) O(z + u, w + v).

By Kronecker’s theorem we know that ©(z, w) has a simple pole at z € I', w € I" with residue 1

along z = 0 and w = 0. To calculate the residues we use the transformation formula (6.1)

O(z + v, w) = exp (?) o(z,w)

deducing that the residue of O(z, w) at z = v is exp(w7y/A) and then

WWM) (-—)(z+u7w+v) =

The other case is analogous. O

lim (2 +wu—7)exp (—

z——u+y

< 'yv+wu>
=exp| ———— | exp
A

TN

In the same fashion as the previous definition of the theta function, the two variable form satis-

fies a distribution relation.

Prop. 6.1.2 (Distribution relation). Let a, b be integral ideals of O such that (ab,b) = 1. Lete € Ok
be such that e =1 mod aband e =0 mod b. Then

> (ea, w0) 1Oz seanwptes (2w, L) = N(ab)Onazy Now,(Naz, Now,abL)  (6.5)

aca'L/L
Beb™L/L

Proof. First of all observe that the quantity (ec, wo) 1,02y +ca,wo+es (2, w, L) do not depend on the
choice of representatives of « and . Indeed, let o/ = a + 71 and 8’ = 8+ y2 with v1,7, € L,

then by the previous lemma we get

O zo+ea’ ,wotep’ (z,w) = (wo + €f, 5’71>920+ea,wo+6ﬁ(2»w) =

= <w05 671>@Zo+604’w0+65<2’ w)
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where we have used the fact that (¢§, ey1) = (€€f3,71) by Lemma and €8 € L since € € b.
From this we deduce

<GOé, wO>L®zo+ea7wo (Z, w, L) = <€O/; wO)L@zg—i-eoc’,wo (Za w, L)

We will now consider the case zy = 0, wy = 0, see [BK10].1.16 for the translated case. We show
that both sides have the same transformation formula with respect to abL. For u,v € abL, we

have by equation (6.1

O(Na(z +u), Nb(w + v),abL) = exp (NCWNBU) ex <szv+wNau

A(abL) A(abL)

—exp (%) exp (W) O(Naz, Nbw, abL). 6.6)

Now observe that by Lemma we have (ea,v);, = (¢,@v) and then since v € abL and
a € a~'L/L we conclude (ea,v);, = 1. Analogously we have (¢3,u), = 1. Therefore, using
Lemma we deduce

) O(Naz, Nbw,abL) =

®e(x+u,e,3+v (Zv w, L) = <6/Ba u>L@ea,€[3(za w, L) = eea,sﬁ (Zv w, L)

Observe that we have

A A

Ocatu.csio(z,w, L) =exp (W) exp (z(eﬂ + ) ;w(ea + u))

Ounes(z w1+ v, L) = exp (_ eaeﬁ> exp (_ (z4+u)eB + (w+v)ea

)@(z+ea+u,w+ea+v,L)=

Oz +ea+u,w+ef +v)

and hence comparing the exponential factor we deduce the following translation relation

20 + wu

uv
Oca,ep(z + u,w+ v, L) =exp <A(L)> exp (A(L)) Ocatu,epto(z,w, L) =

—exp (%) exp (W) Ocarcs(z,w, L). 6.7)

From this equation and we conclude that both satisfy the same transformation formula

with respect to abL.

Next, we show that both sides have the same poles with the same residues. By Kronecker’s
theorem [6.1| we have that the left hand side of (6.5) has simple poles at most on (z,w) where
z = —eapg+yorw = —efy + y for some oy € a~'L, By € b='L and v € L. By the previous

lemma, we have

im  (z4ean+7) Y. Oweslzwl)= Y <6577>exp<(7—6040)w>:

z2——eao+y A
aca 'L/L Beb tL/L
Beb 'L/L

N(b) exp (('V_;“O)w) ify e bl

0 otherwise.

Hence the left hand side has a pole at z € (ea™! 4+ b)L = ba~' L. By Kronecker’s theoremwe
have that the righ hand side of equation has the same poles for z with the same residues.

The case of w is analogous. O
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Theorem 6.2. For any zy,wy € C we have that the Laurent expansion of © . .., (z,w) at the origin is
given by
C) (z,w) = (wo, 20)0.,2 "1 4 Suew ™ + Z (—l)kﬂwzkuﬂ
Z0,Wo ) 0, <0 z0 wo = Aj]!
»JZ

where 6, = 1 if x € L and is zero otherwise.

Proof. Let H; (2, w, k) = exp(—wZ/A)H; 1 (2, w, k). Then by Lemma we obtain

82Hj+k(2’ w, k) = _kI:I.7'+7€+1(Z’ w, k)
- 1 -~
OwHjiik(z,w, k) = - itk (z,w, k).
Hence when zy, wy ¢ T, the coefficient of z and w in the Taylor expansion of H, (2420, w+wp, 1)
at the origin is given by
T (C1)k Hk+j+1(%?a wok+1) i
JlAI

k,j=0

By definition of © ., .,,)(2z, w) and Kronecker’s theorem we get

WoZ2o 24+ z0)w+ (w4 wg)z\ ~
@(ZO@O)(z,w):exp <?40> exp<( 0) A( o) )Hl(z+207w+w()7l)'

Sine O, ,u,) (2, w) is holomorphic at the origin, the assertion follows form the fact that E; 1 (20, wo) =

exp(woZo/A)H ;1 (20, wo, k). The case when zy, wy € L follows using similar argument, paying
careful attention to the poles. See [BK10] 1.4. O

6.1.2 Tables of values

Using the results of the previous sections, we can now compute the values of the Eisentein
numbers E; . through the expansion of the two variables theta function O ., .,,)(2,w). In the

following tables, we show the coefficients of the expansion.

L = Qo (Z +i Z) with Qo & 1.85407467730137191843385034720—1.85407467730137191843385034720:

©0,0)(, ) 1 T 2 2 zt x° 20 7
1 0 0 0 = 0 0 0 —5
y 0 0 % 0 0 0 7% 0
y? 0 % 0 0 0 —& 0 0
y3 é 0 0 0 7% 0 0 0
yt 0 0 0 - 0 0 0 s
y° 0 0 —ﬁ 0 0 0 10§00 0
Y8 0 7% 0 0 0 10;00 0 0
Y’ 7)% 0 0 0 ﬁ 0 0 0
O (w,/2,0)(®, ) 1 T z? 3 T z° 26 x7
1 0 5i 0 % 0 ~80! 0 5600
y i 0 3 0 —ai Tosa 0
y? 0 1 0 —Li 0 =5 0 — Togt
y3 2 0 —gi 0 0 a5l 0
y* 0 —1i 0 - 0 =5t 0 Sove0
y° -2 0 -2 0 o5 0 Tos50 0
Y8 0 — % 0 797101’ 0 3600 - ﬁi
y’ - 0 i 55 — 7560 0
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L =Qu(Z+vV—-27Z) with Q. ~ —0.173822480149928796548653183122:

©(0,0)(, ) 1 T 2 s z* s 20 7
1 0 35 0 -2450 0 68600 0 -2572500
y 35 0 — 112£ 0 154350 0 -6174000 0
y? 0 — 11024 0 385874 0 -8103375 0 162067500
y? -2450 0 385874 0 - 7675288125 0 94539375 0
" 0 154350 0 — 67528125 0 283618125 0 — 15598096875
v 68600 0 8103375 0 283618125 0 — 45602518125 0
o 0 6174000 0 94539375 0 _ 45(%621%18123 0 287&7%96875
o7 2572500 0 162067500 0 — 15508006875 0 287872396875 0
O (w,/2,0) (%, ) 1 T 22 e a* a® 2 27
1 0 -70 0 1225 0 -85750 0 4501875
Yy -105 0 0 0 -231525 0 4630500 0
y? 0 — 11025 0 -385875 0 81033575 0 -202584375
o 7350 0 — 1157625 0 0 0 — 283618125 0
4 0 771750 0 — 67528125 0 — 283618125 0 15598996875
y° -617400 0 24310125 0 — 850854375 0 0 0
o 0 43218000 0 472696875 0 _ 45()‘6215618125 0 _ 2878728396875
Y -38587500 0 -1458607500 0 — 46796900625 0 — 63017190625 0

L=0Q(Z —i—HT\/jg Z) with Q. ~ 2.10327315798818139176252861858—1.21432532394379080590997084489i

O 0,0)(x,y) 1 x z? 23 2t z° 20 z7
1 0 0 0 0 0 L1 0 0
y 0 0 0 0 N 0 0 0
o2 0 0 0 1 0 0 0 0
¥ 0 0 1 0 0 0 0 0
ot 0 L 0 0 0 0 0 .
W i 0 0 0 0 0 — gk 0
4 0 0 0 0 0 —k 0
% 0 0 0 0 . 0 0
Oy /2,0) (2, Y) 1 x z? 23 2t z° 20 27
1 0 % 0 — % 0 — ﬁ 0 — &
y 1 0 1 0 - 0 -=
y? 0 -1 0 0 0 % 0 — 2§0
y3 -1 0 ‘l) 0 - ;74 0 ﬁ
y! 0 3 0 v 0 550 0 3360
y° é 0 - é 0 % 0 0 0
¥ 0 -3 0 3 0 ~5% 0 550
v -3 0 i 0 ~ 18 0 Tz 0
L = Qo (Z+ 577 7) with Qo ~ 0.249580467962725575672578641846
00,0)(%,y) 1 T 2? a3 2 x5 20 z7
0 -15 0 -525 0 -9450 0 -118125
y -15 0 -1200 0 -25200 0 -252000 0
y? 0 -1200 0 -36000 0 -252000 0 -7560000
y3 -525 0 -36000 0 -180000 0 -7560000 0
yt 0 -25200 0 -180000 0 -7020000 0 -37800000
y° -9450 0 -252000 0 -7020000 0 -18360000 0
6 0 -252000 0 -7560000 0 -18360000 0 — 45200000
7 118125 0 7560000 0 37800000 0 — 743200000 0
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O (wy /2,0) (2, Y) x z? 23 2t 0 20 z7
1 0 1y BT 0 BE 0 BRE | 0 LIS
1575v/=7 23625/=7 354375/=7
16 32 256
y 7275 + 15\£T7 10 1050 — 0 :mgzs + 0 1252125 _ 0
450\/j7 7875v/ =7 23625v/—7
2 4
2 -0 900 — 0 15750 + 0 7482125 _ 0 235046875 _
23625/—7 1299375v/—7
900y/—7 11250v/7 236207/-7 1200375v/=7
y3 525 0 —4500 + 0 354375 — 0 838685 _ 0
16757 22500v/=7 16875V/—7 12999757
y 0 —31500 + 0 528750 — 0 1535625 _ 0 L78089375 |
. 2413125sqrt—7 26578125/ —7
31500v/=7 33750y/~7 20131255qrt =7 26578126v/—7
y° —33075 + 0 1228500 — 0 —5484375 — 0 50203125 1 0
23625v/—7 94500v/—7 24131257 12909375y/-7
Yo 0 2205000 — 0 —19372500 — 0 31843125 + 0 285271875 _
189000/ =7 5197500/7 12909375v/=7 5684375/~
Y7 3898125 _ 0 —46305000 — 0 93318750 + 0 1251703125 0
354375/27 10395000/~ 7 53156250v/7 75684375v/—7
L = Qoo (Z+ 1 Z) with Qo ~ 0.157988062436041406847226542091
O0,0)(x, ) 1 x 2? a3 2t b 28 27
1 0 56 0 _ 17248 0 _ 664;)48 0 _ 12742%7216
y -56 0 -7056 0 271656 0 — 41811456 0
y? 0 -7056 0 -321048 0 — 45635208 0 — 2008081152
y? —irzi8 0 -321048 0 6914880 0 — 1490845128 0
yt 0 271656 0 6914880 0 — 1103614818 0 —3673875744
ys _ 664%5048 0 _ 456(%58208 0 _ 11036514848 0 _ 28252;3548608 0
yG 0 _ 478151/156 0 _ 11908{;18128 0 _ 28258;{;18608 0 _ 11335826:5703872
y7 _ 12742.%721()' 0 _ 21]()&(?581152 0 — 3673875744 0 _ 1133582(;7()3872 0

6.2 Power series and measure associated

Recall that E is the formal group associated with E with respect to the parameter t = —2z/y
and \(t) denotes the formal logarithm of E. We also fixed an embedding i, : Q@ < C, such that
the completion of K in C, is K. Let W be the ring of integers of the completion of the maximal

unramified extension of Q,,.

Definition 6.3. We define (:)(s, t) to be the formal composition of the Laurent expansion of ©(z, w) at
the origin with z = A(s) and w = A\(t)

O(s,t) = O(2, W) |.mr(s)w=A(t)-
Let zp,wo € L ® Q be torsion points whose order n is prime to p. Analogously we define (:)(ZO’wO) (s,t)

and ©7, 1 (s,1)

The following theorem will allow us to construct p-adic measure. The assumption of p splitting
prime is fundamental, in fact in the case of p supersingular the coefficients of @2;0 wo) AT€ P-

adically unbounded.
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Theorem 6.3. Let 2o, wo € L ® Q be torsion points whose order n is prime to p. Then we have that
or is p-integral.

(20,w0)

07,0 (5:1) = Ozg.up) (5:1) — (w0, 20)8205 " — Gyt € W{[s, 1]].
Proof. See [BK10].2.3 O

Recall that by Prop. we have an isomorphism of formal groups defined over R,

n:E—>Gm
S n(t) = Qpt 4+

which is of the form 7(t) = exp(A(t)2,) — 1. We let o(T') = Q,'T + - - - to be the inverse power

series of 7(t).

Definition 6.4. We let @z‘z‘o ) (T, T2) to be the formal power series defined by

,Wo

O(z0.wo) (11, 12) = O7, o) (8 ) s=u(Ty) t=u(T) -

Using this power series we then define its measure associated

Definition 6.5. Let zp, wo € L ® Q—L be torsion points of order prime to p. We define the measure

Hzo wo O Zi to be the measure associated to the power series (:)Z‘go wo) T, Ty) by Lemmam

Lemma 6.2.1. For any zy, wo € (L ® Q) — L be torsion points of order prime to p we have
i ) . E; (20, w0)
- - k k20, Wo
/ xk 1yjdﬂzo,w0 (x’y) = (_1)]+k 1QP ’ +1(k - 1)|%
z

for integers j > 0 and k > 0.

Proof. First of all recall that by Lemma if p1; 1 denotes the measure associated with the

power series DI D5 (T}, Ty) we have

(2071110)
/duj,k-(x,y)=/ Y dpg v, -
z; z;

By equation (5.2) we obtain

/Zz

In the proof of Lemma[5.2.2]we proved the following equality

4
dT

j J k j D*t
a:ky]duz(),wo = /22 (0> <0> dﬂj,k(ﬂf,y) = D{Dlg (z07w0)(T17T2)‘(0,0)'

1+ T) 57T = [(W’(T))l

f(T) |T:L(T1)7
that implies
D{Dlg ;. (Tla T2)|(0,O) = Q;j_kafaijgzo,wo (Za w)|(0,0) .

(20,w0)

By the Laurent expansion of Theorem 6.2 we then conclude
1 i FE; k(z0,w
/ Sy g g (2,y) = (17T (k- 1)!7J’k(142 0
7.2

p
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Observe that when zy, wy € L then we cannot calculate directly the interpolation property of

2o - due to the factors s~ and ¢! subtracted in the definition of @’{ZO wy (8, 1) instead of 2~
and w™'. To deal with this we consider the restriction to Z, x Z,. Applying the restriction
given by Lemma to both variables we obtain that the measure associated with the power

series

@(20 wo) T17T2 Z @(20,11)0) 1 +T1) - 13T2>7
Cp 1

T Z (Zo wo) Tl’ (1 +T2) o 1>+
C” 1

Z Ot GO+ T1) = 1,61+ T5) = 1)
1
is the restriction of the measure ji., .,. Furthermore, we can observe that this power series

coincide with the one given by ©" instead of ©*. Indeed, the poles coming from +(T})~* and

t(T2)~! cancels out, in particular the terms involving +(77)~! add up as

1 1 1 1 1 1 1
uTy) Z;C,Z_:l (C(L+Ty) —1) 54,,2: (1) - ]924;31 (G (1+Ty)—1) -0

—1
G-l

We can rewrite the power series associated to the restricted measure as

0. g (T1, To)— Z 0. ) (C(L+T1) — 1, T2)—

(z0,w0)
C” 1

2 Z @Ezmwo)(ﬂ((l +T5) — 1)+

pc,,1

Z Oy (L1 +T1) = 1,Ga(1 + Ty) — 1). ©638)
Cf 1
¢r—1

Prop. 6.2.1. Let a be an integral ideal of K prime to p and let vy, wq be a-torsion points of C /L. Let syn
and t,n be p"-torsion points of the formal group E and let v,,, w,, be elements in L ® Q that respectively

represents the images of syn and ty». Let € be an element of Ok such that
e=1 modp”, €=0 mod5p".
Then we have
@wo,ewo (s[+]spn, t[+]tpn) = (€vn, ew0>L@)a,0+€vmewo+ewn (s,1).
Moreover, if e =1 mod a we have

~

651)0,611)0 (5[+]5p"a t[+]tp") = <€Un7 6U}0>L <€wn7 (6 - 1)v0>Lé1;0+61)n,w0+ewn (57 t)

Proof. See [BK10].2.20. U
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Lemma 6.2.2. Let zg, wo € L ® Q be such that azy and awg are in L and Na is prime to p. Then

/ (14 T2 (14 To)™ diteng cnn) (21, 22) =
ZX X LX

= [@ezo,ewg (Z, w, L) - G)pezo,ewo (pza w, EL) - ®ezo,pewo (Z; pw, EL)“F

+Opezo,pewo (pzvpuhpizL)} |)\(L(T1)),)\(L(T2))

where € € O issuch that e =1 mod pand e =0 mod p. If in addition e =0 mod a, then we have

/ (1+T1)x1(1 +T2)””2du(zO7,w0)(z1,x2) =
X X 71X

= [620,1110 (27 w, L) - @pzo,ewo (PZ’ ’LU,EL)—
- <(€ - ]-)ZvaO>L®ezo,pwo (Z;Pw»ﬁLH‘

+((e = 1)20, w0} LOpezo,pew (pz7pw,52b)} AT ACT)-
Proof. Recall that by definition we have

9220 ewp (Th T2) = 9620,51110 (Z7 U}) |z:)\(L(T1)),w:)\(L(T2)) .
Then by Prop. [6.1.2]we have

Z ®ez0 ewg 1 + Tl -1 T2 Z 620,61110 ]817t) =

¢r—-1 1€E[x

= Z <€U17 6u)()>l/@ﬁ7)o-"-67)1 LEW(Q (57 t) |s:L(T1),t:LT2 =
V1 prlL/L

= Z <€U17€wO>L@6vo+ev1,ewo (Za w)'z:)\(L(Tl)),w:)\(L(Tz))
V1 EpflL/L

Applying the distribution relation Prop. we obtain

Z @620 Ewo 1 + Tl) -1, T2) = pgpezg,ewo (PZ7 w7ﬁL)|Z:)\(L(T1)),U}:)\(L(T2))'
¢r—1

Similarly, we have

Z @EZO ewo Tla (1 + T2) - 1) = eezo,pewo (Z)pw?EL)‘Z:)\(L(Tl)),’w:/\(b(Tg))7

&1
z Ol 0) (L1 +T1) = 1,G(1+ T2) = 1) = Opezy pewy (7, Pw, P2L) [ A(u(11)) A (1)) -
P_1
by

The first assertion now follows from the fact that the restricted measure is given by (6.8). For
the last assertion see [BK10]].3.5. O

6.3 Relation to Yager’s p-adic measure

Let ¢ be a Hecke character of an imaginary quadratic field K with class number 1. Let § be its

conductor. Let Q. be a complex number such that L = Qf is a period lattice of a Weierstrass
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integral model of E over Ok. As usual, let p be a rational prime which splits as (p) = pp in
K coprime with the discriminant —dy. Fix a Weierstrass model of C /L over Ok and a p-adic

period €2, of its formal group.

Definition 6.6. We define the p-adic measure p.;, by
po(Ty) = D fpaeanm.0(@ Niy, L),
a€lk (f)/Px (F)

where o is any element of a=' such that g =1 mod *§.

Observe that the definition does not depend on the choice of the representative a and «,. This

is because ¥(a) = aif a =1 mod *f.

Recall that we define L, (1)71F) to be

T ) = v(p)*H PO (27 (e (gt
Loo(¥ 7 k) = <1 ~ Npi ) (1 NpF ) <\/E> QDL k).

The following theorem will now establish the connection between Yager’s p-adic measure and

the previously constructed one.

Theorem 6.4. Let j, k be integers such that k > —j > 0. Then we have

1 L . o
W/Z z ey dpy (2,y) = (17 (k= 1)1 Loo (87 k)
P p XLy

Proof. Lete € Ok suchthate =1 mod fpand ¢ =0 mod p. Then by Lemma we have
/ (L 4+T1)* (1 + T2)Ydity(aga)e,0(2,y) =
Ly XLy

= [Op(ana)00.0(2 W, L) — Opy(araran 0(pz, 0, PL) — Ocy(a,ayan 0z, pw, PL)+
+@pew(aqa)9w,o(p27pw7ITQL)} AT A(T2))-

By the homothety relation (6.4) we have that rescaling by a factor ¢ (p) = pi(p)~! we obtain

@pw(auu)ﬂw,o(pza w,EL) = p_lw(p)gw(aapG)Qw»o(w(p)zvp_lw(p)wv L)
By Theoremwe have

ko) (1)
j+k—1 pj A(L)J Eng

85713&91&(04@ a)Qw,O(lp(p)Za p’lw(P)w, L) |z=0,w=0 = (_1) (w(aaap)ﬂom 0, EL)

Recall that by Corollary we have

> B k((aap) Qe 0.5L) = Qe[ Y QXU NTILE k).
a€lx(f)/ Pk (f)
Since L = Qf, we have
A(L) = NflQu| G2
Y8

and so we conclude

Z 85_161{;@111((1”@900,0(172’w7ﬁ)L)‘Z:07w:0 =
el () Pic(h)
j , —jt+k
(1)L ( 2n )J Y(p) Ly

k)
Vdg pitt Qi
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Similarly, we have

> 000 an @) 0(2 W, PL) 20,00 =
a€lk (f)/Px(f)
—j+k

_ (71)j+k71( . 1)| 27 7 J(E)JJF’C Lf(%/} 7k)
; ! \Vdg pitl QLEF
and
Z 0571000 e (any )0 (P2, PW, P L) | 20,00 =
a€lx )/ P (f)
j kT (N —j+k
_ (cayhergg oy (2 R R L k)
= J ! \/@ pj+k+1 QZ;’;’“ .

Since Os,10g = 2,0, and Or 10y = 2,0y, the assertion now follows from the definition of /1, and

the equations above. O
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APPENDIX A

Class Field Theory

For this section we mainly refer to [Schl, [Neu99] and [CF10].

Theorem A.1 (Local reciprocity law). Let K a finite extension of Q,. For any L/K finite Galois

extension, the subgroup Ny, i (L*) is open in K* and there exists a group isomorphism
riw KX /Ny (L) = Gal(L/K)®

such that the following properties are satisfied

i) if L/ K is unramified, then rp, /i (7p) = Frobr, /x,

ii) if L' /K" is a finite Galois extension with K C K' and L C L, the following diagram commutes

K/

N
K/X/NL//K/(L/X) —/K> KX/NL/K(LX)

J/TL//K/ J/’I‘L/K

Gal(L'/K')® —— Gal(L/K)

where the bottom horizontal arrow is the morphism induced by the restriction map Gal(L'/K') —
Gal(L/K)

iii) if 7 : L = L' is an automorphism of valued fields and if K' = 7(K), we have a commutative

diagram

’

KX /Ny (L*) ——— K [Ny (L)

J/TL/K J{’I”LI/K/

Gal(L/K)® —————— Gal(L'/K")%
where the bottom horizontal arrow is the isomorphism of groups induced by o — o1,

Moreover, there is at most one family of isomorphisms (k)1 K satisfying i) and ii).

Consider now L/K a finite abelian extension of number fields. The local reciprocity law allows

us to define a group homomorphism for every place v of K

KX = Gal(L/K)
Xy > (24, L/K)
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which is the composite of the following chain of homomorphisms

er/K’U

K, - K /N(Ly/Ky) (L) —— Gal(Ly/K,) — Gal(L/K).
We can therefore define a group homomorphism

ArtL/K : A;( — Gal(L/K)
(@o)o = [ (@0, L/K).

v

called Artin reciprocity map.

Theorem A.2 (Artin reciprocity map). The Artin reciprocity map Arty, i induces a group isomor-
phism

Moreover Arty, is the unique continuous group homomorphism from Ay to Gal(L/K) such that, for
all v unramified in L, we have

A’I"tL/K(ﬂ'U) = FTObL/K

where w, = (1,...,1,m,,1...) € AJ is the idele whose all coordinates are 1 excepted the coordinate at

v which is the uniformizer.

Theorem A.3 (Takagi-Chevalley, Existence theorem). The map L — K*K* Ny i (A}) induces a
decreasing bijection between isomorphism classes of finite abelian extensions of K and open subgroup of

finite index containing K* in Aj.
Theorem A.4. Let m be a modulus for a number field K. We have an exact sequence
1= 0% /(0ORNEK™Y) — K™ /K™ — CIE — Clxg — 1 (A1)
and a canonical isomorphism
K™/K™! = {£}#™= x (O /mg)*. (A2)

Corollary A.4.1. Let m be a modulus for K. The ray class group Cl}} is a finite abelian group whose

cardinality h¥ is given by

m_ p(m)
£ o op R (A3)

where hye = #Cly and p(m) = #(K™/K™!) = p(my)p(mg), with

p(mae) = 2#m= p(mg) = #(Ox /mo)* = N(mo) [T (1 = N(p)™).

plmo
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APPENDIX B

Elliptic curves with Complex

Multiplication

For this section, we will mainly refer to Rubin’s article [Rub81]and Silverman’s book [Sil94].

Fix a subfield F' of C and an elliptic curve E defined over F'.

Definition B.1. We say E has complex multiplication over F if Endp(FE) is an order in an imaginary
quadratic field, i.e., if Endp(E) # Z.

We assume from now on that £ has complex multiplication by O ring of integers of a quadratic

imaginary extension K. There is a unique isomorphism
[]: Ox = Endp(E)
such that for any invariant differential w € Q on E we have
[0]w = aw

for all @ € Ok. For simplicity, we identify Endp(E) with Og. If a C O is an integral ideal,
we will write E[a] = Nqeq- As usual, consider the associated lattice L C C and the analytic

morphism
£:C/L— E(C)

Then for every a fractional ideal of K we have that a=*L is a lattice in C and the associated
elliptic curve ax E = F,-1;, has complex multiplication by O . Furthermore, with the standard

identification we have that to every a € Ok corresponds the morphism £(z) — &(az).

Prop. B.0.1. Let E elliptic curve with complex multiplication by Ok.

(i) Ela] is the kernel of the natural map E — ax E
(i) Ela]is a free Ok /a-module of rank 1.

Corollary B.0.1. Let E elliptic curve with complex multiplication by Of.
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(i) For all integral ideals a C Ok, the natural map E — a x E has degree N, qa and #E[a] =
NK/ Qa.

(ii) Forall o € Ok, the isogeny [a] has degree | Nk ga.

Theorem B.1 (Main theorem of complex multiplication). Let a a fractional ideal of K and an ana-
lytic isomorphism
¢£:C/a— E(C).

Suppose 0 € Aut(C /K) and x € A} satisfies (v, K /K) = o|xav. Then there is a unique isomor-
phism &' : C Jz~'a — E°(C) such that the following diagram commutes

3
K/a ——— FEiors

| k (B.1)

K/z~'a —— E7, .

where Ey,,s denotes the torsion in E(C) and similarly for E7 ..
Let H denote the Hilbert class field of K.
Corollary B.1.1. (i) K(j(E))=H C F,
(ii) j(F) is an integer of H.
Corollary B.1.2. There is an elliptic curve defined over H with endomorphism ring O g
Definition B.2. Consider a Weierstrass equation for E over H
v =2+ Ar + B

with A, B € H. Then we define the Weber function for E/H as

x if AB #0,
WP) = hwy) = { 2> ifB—0,
x> ifA=0.

Theorem B.2. Let K imaginary quadratic field, let E be an elliptic curve with complex multiplication
by Ok, and let h : E — C be the Weber function for E/H. Let ¢ be an integral ideal of O. Then the
field

is the ray class field of K modulo c.

Corollary B.2.1. K% = K(j(E), h(Eiors)). If in particular, K has class number 1, K = H, then
K% = K(Eyiors).

Theorem B.3. There is a Hecke character
Y =vp: AL /F* = C* (B.2)

with the following properties.
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(i) Ifx € Apand y = Npjax € Aj, then
»(2)O0k =y (yOx).

(ii) If z € A} is a finite adele (xoo = 1) and p is a prime of K, then ¢(z)(Np/xz), " € le(p and for
every P € E[p®]
(2, F**/F)P = (x)(Nr/xw), P,

(iii) If qis a prime of F, then <) is unramified at q if and only if E has good reduction at q.

Let f = fg denote the conductor of the Hecke character ¢5. We can view 1 as a character of

fractional ideals of F’ prime to f in the usual way.
Corollary B.3.1. As a character on ideals, 1) satisfies the following properties.
(i) If bis an ideal of I prime to f then

Y(b)Ok = Np/kb.

(ii) If q is a prime of F not dividing f and b is an ideal of Ok prime to q, then for every P € E[b] we
have
(9, F(E[b])/F)P = 4 (q)P.

(iii) If q is a prime of F' where E has good reduction and ¢ = N, qq then ¢(q) € Ok reduces modulo
q to the Frobenius endomorphism 1, of E.

Corollary B.3.2. Suppose E is defined over K, a is an ideal of K prime to 6§, and p is a prime of K not
dividing 6f.

(i) Elaf] € E(K(af)).
(ii) The action of Gal(C /K) on Ela] induces an isomorphism
Gal(K(E[a])/K) = (Ok /a)*.
(iii) If bla then the natural map
Gal(K (af)/K(bf)) — Gal(K(E[a])/ K (E[b])).

(iv) K(E[ap™])/K(E]a]) is totally ramified above p.

(v) If the map O — (O/a)* is injective then K (E[ap™])/K (Ela]) is unramified outside of p.
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APPENDIX C

GP/Pari Code

1 E11QI1 (d)={

if (d%4==1, tau=(l+sqrt(d))/2,tau = sqgrt(d));

tauxz

jO0 = round(ellj(tau));
e = ellfromj(3j0);
E = ellinit (e);

\\ elliptic curve over Q with End_Q(E

E = ellminimalmodel (E) ;
L = ellperiods(E);
wl = ellperiods (E) [1];

w2 = ellperiods (E) [2];

tau = wl/w2;

Gk (k, tau)=

{

V = mfcoefs (mfEk (k),100) ;

Ekpol = truncate(Ser(V));

g= exp (2xPixtauxI);

Ek = subst (Ekpol,x, q);

G = Ekx (2%PixI) "k/(k!) *bernfrac(k);

return (G) ;

ThetafromL (L, z0,w0,n)=

{

wl = L[1];
w2 = L[2];

) =0_K
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66

Arp

ENDIX C: GP/PARI CODE

A

si

tr

si

se

po

si

si

= real ((wlxconj(w2)-w2+conj(wl))/ (2«Pi*I));

gmall = ellsigma (L) ; \\ power series of sigma up to precision n

unsigma = truncate (sigmal) ;

gmaxy = subst (trunsigma, x,x+y+z0+w0) ;

sigma (x+y)

\\ truncation of sigma

\\ polynomial approximation of PS of

rsigmaxy = sigmaxy+O (x°n); \\up to precision n in both coefficients
lsigmaxy = SertoPol (sersigmaxy,n);
gmax = subst (trunsigma, x,x+z0) ;

gmay = subst (trunsigma, x, x+w0) ;

invsigmax = truncate (sigmax” (-1)+0(x"n));

series of sigma in x

\\ polynomial app. inverse power

invsigmay = truncate (subst (sigmay” (-1),x,y)+0(y"n)); \\ polynomial app. inverse

s2

if(z0 == 0 && w0 == 0,

)

if(z0 == 0 && w0 == 0,

power series of sigma in y

= -Gk (2,tau)*w2” (-2); \\Weil chap 6 variation 2

conj (w0) +w*xconj (z0)) / (-A))

polexpz0Ow0

\\series expansion of exp ((z*

serexpz0w0 = exp ((x+conj (w0)+y*rconj(z0))/(-A))+0(x"n); \\up to precision n in

both coefficients

polexpz0w0 = SertoPol (serexpz0w0,n);

s2polexpz0w0

truncate (exp (-s2xx*y)+0(x"n)),

series expansion of exp ((zxconj(w0)+wxconij(z0))/ (-A))

s2serexpz0w0 = exp(-s2* (x+z0) * (y+w0))+0(x"n) ; \\up to precision n in both
coefficients
s2polexpz0w0 = SertoPol (s2serexpz0w0,n) ;

)i

Thetal = exp (- (z0xconj(w0) /A)) «polexpz0wl+s2polexpz0wl+polsigmaxy+invsigmaxx
invsigmay;

Thetal = truncate (ThetalLxx*y + O(x"n));

V1
w

fo
V1
MO

fo

coefficients in x translated by 1

= Vec (Thetal) ;

= Vec (0, #V1);

r(1i =1, #vl, W[i] = O(y"n));

= truncate (V1 + W);

= matrix (#V1);

r(i =1, #v1, MO[#V1-i+1,]=Vecrev(V1[i], #V1));

of dimension 3%n-3
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81 VecEk (L, n, tau)={

83 wl = L[1];

84 w2 = L[2];

85

86 VEk = Vec(0,n);

87

. for (i=1,n-1, if(i>1 && i%2==0, VEk[i+1]= Gk (i,tau)*w2"(-1)));

89

90 return (VEK) ;

92 \\ Compute theta expansion using Jacobi triple product

9 Thetaexptrans (L, z0,n,m)={

98 wl L[1l];

L[2];

99 w2

100 tau = wl/w2;

102 A = real ((wlxconj(w2)-w2+conj(wl))/ (2«PixI));

103

104 q exp (2xPixIxtau);

105 z

exp (2+«P1ixI* (x+20)/w2);
106

107 thetaexp =0;

108 Pg3 = 0;

109

110 for(i = 0, m, Pg3 += (-1) i (2xi+1)*q” (i* (i+1)/2));

111

112 for (j=-m, m, thetaexp += (-1) "J*z j*q” (F*(j+1)/2));

113

114 thetaexp = thetaexp*exp (PixIx (x+z0)/w2)/Pg3+w2/ (2%Pi*I)+0(x"n);

116 thetaexp = thetaexprexp (conj(w2)/ (2xAxw2) x (x+20) "2) ;

118 return (thetaexp) ;

124 SertoPol (f,n)={

126 vecf = Vec (f+0(x"n));

127 W = Vec (0, #vecf);

128 for(i=1, #vecf, W[i] = O(y"n));
129 polf = Polrev (truncate (vecf+W));
130

131 return (polf) ;
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162

163

164

165

166

178

179

180

182

APPENDIX C: GP/PARI CODE

ThetadTP (L, z0,w0,n, m)={

X;
yi

wl = L[1];
w2 = L[2];

tau = wl/w2;

Thetax = Thetaexptrans(L,z0,n,m);

if(z0==0, Thetax = serchop (Thetax,1));
Thetay = subst (Thetaexptrans (L,w0,n,m),x,Vy);
if (w0==0, Thetay = serchop (Thetay,1));
Thetaxy = Thetaexptrans (L,y+z0+w0,n,m);

Theta2 = Thetaxy*Thetax” (-1) *xThetay” (-1);

if(z0 == 0 && wO == 0, polexpzOw0 = 1, \\series expansion of exp((zx
conj (w0)+wxconj (z0))/ (-A))
serexpz0w0 = exp ((x*xconj(w0)+y*conj(z0))/(-A))+0(x"n); \\up to precision n in
both coefficients

polexpz0w0O = SertoPol (serexpzOwO,n);

ThetazO0w0 = exp(-z0xconj(w0) /A)xpolexpz0wl+xThetal*x+y+0(x"n);
V2 = Vec (truncate (Thetaz0w0)) ;

W = Vec (0, #V2);

for( i =1, #v2, W[i] = O(y"n));

V2 = truncate (V2 + W);

NO = matrix (#V2);

for(i =1, #v2, NO[#V2-i+1l,]=Vecrev(V2[i],#V2)); \\ matrix of coefficients of Theta

of dimension 3%n-3

N = NO[l..n-1,1..n-17; \\ matrix of coefficients of Theta up to x"n*xy’'n

return (N) ;

NewtonSumsEk (L,d, n, r)={
wl = L[1];
w2 = L[2];

tau = wl/w2;

Sr = matrix(d+2,r);

M = matrix (d+2);
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for(i=0, n-1,

for (j=0, n-1,

if (gcd (i, J) %n,
rho = ixwl+j*w2 ;
M = ThetadTP (L, rho/n,0,d+3,20);

for (1=1,d+2,
for(c=1,r,

Sr[l,c]=Sr[l,cl+M[1,2]"c)))));

return (Sr) ;
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List of Symbols

K quadratic immaginary field
Ok ring of integers

—dg discriminant of K

p rational prime

p,q prime ideals

v, normalized p-adic valuation
7 generator of p

K, completion of K at p

O, ring of integers of K,

a,b, m integral ideals

wg roots of unity of K

wj roots of unity = 1 mod f§
K(m) Ray class field modulo m
hi class number

h% Ray class number modulo m
E elliptic curve

f conductor of E

1) Hecke character of elliptic curve

L period lattice
g Weierstrass p-function
E, kernel of endomorphism «

E formal group of elliptic curve

E reduction of elliptic curve mod p

F,, field extension of K generated by

7"+ torsion points

K, . field extension of F,, generated by

m"-torsion points
®,, ., completion of F,,, atw
En,mw completion of K, ,,, at prime above w
F union of F,,
Ko union of K, ,,,
U),.m units of =, ,,,
Un,m units of =, ., congruent to 1
G Galois group of K,/ K
¢ Coleman power series associated to «
gm,» logarithmic derivative of ¢, g
o(z, L) Weierstrass’s o-function
A(L) Ramanujan’s A-function
A(L) area of lattice L
n(z, L) n-function
6(z, L) fundamental #-function
OFf o rational function on E with respect to a

©(z,a) complex L-ellpitic function with re-

specttoa

Ay (z,a) product of Theta functions over set

of representatives
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C,,.m group of elliptic units
e(u) elliptic unit associated to map
(z,w) pairing associated to lattice L

Hy(z,w,s, L) Eisenstein-Kronecker-Lerch se-

ries

H}(z,w,s, L) restricted Eisenstein-Kronecker-

Lerch series
E}(z,L) Eisenstein series
E7 (20, wo, L) Eisenstein-Kronecker number
L(3,s) L-function associated to 1

Ly (1, s) partial L-function associated to

and m

(i) binomial coefficient function

f. power series associated to measure p
iy measure associated to power series f
Fgfl 2) Gamma transform

w(x) Teichmuller character

()1, 1+pZ, partof x

u topological generator of 1 + pZ,

98

D, pdifferential operator (1 + 7;)0/0T;

7 isomorphism between Eand G,

), p-adic period associated to n

(,)n Weil pairing of p"*!-division points of L

Loo(¥**9 k) scaled L-value associated to

,(/)7 k’j

GU172) Yager’s power series that interpolates

L-values

O(z,w, L) Kronecker two variable theta func-

tion

O (z0,w0) (2, w, L) translated Kronecker two

variable theta function

(:)(Zom,o)(s,t) formal composition of Laurent
expansion of theta and logarithm

é*

(20,u0) (8, 1) truncation of O(s,t)

é*L 1

(20,wo0)

(s,t) composition of ©*(s,t) and ™
H(z,wo) Measure associated to @?émwo) (s,t)

iy Bannai Kobayashi measure corresponding

to Yager’s construction
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