P-ADIC MODULAR FORMS &

THEIR GEOMETRY

PAOLO BORDIGUOU, PhD STUDENT

LEIDEN UNIVERSITY

JULY 23 2025 SYMPAAN' 25

OI. INTRODUCTION:

THREE PERSPECTIVES ON MODULAR FORKS

COMPLEX ADALYTIC

$$f:\mathcal{H}\longrightarrow \mathbb{C}$$
 HOLOMORPHIC, AE \mathbb{Z}

+ EXTRA CONDITIONS

GENERATING SERIES

$$-G_{\kappa}(q) = -\frac{B_{\kappa}}{2\kappa} + \sum_{N \geq 1} O_{\kappa-1}(N)q^{N}, \qquad O_{\kappa-1}(N) = \sum_{1 \leq d \mid N} d^{k-1}, \qquad B_{\kappa} = -\kappa \geq (1-\kappa) \qquad \text{Essension Series}$$

$$O_{\kappa-1}(n) = \sum_{1 \le d \mid n} d^{k-1}$$
 $B_{\kappa} =$

NUMBER THEOPETIC FLAVOUR

$$- h(q)^{-1} = q^{\frac{1}{24}} \cdot \prod_{n \ge 1} (1 - q^n)^{-1} = q^{\frac{1}{24}} \cdot \sum_{n \ge 0} P(n)q^n \qquad P(n) = \# \{PARTITIONS \text{ OF } n\}$$

COMBINATORIAL FLAVOUR

$$- \mathcal{L} \in \mathcal{S}_{2}\left(\Gamma_{0}(N), \mathcal{Q}\right) \qquad \mathcal{L}(q) = \frac{Z}{n \geq 1} \text{ an } q^{n}, \qquad \partial_{p} = P + 1 - \# E_{p}(\mathbb{F}_{p}) \qquad P \nmid N$$

GEOMETRIC FLAVOUR

EX/Q ELLIPTIC CURVE ATTACHED TO &

GEONETRIC

SECTION OF LINE BUNDLE

E EXIPTIC CURVE CEELUZ CYCLE N-GROOP MODULI SPACE OF ELLIPTIC CURVES WI CYCLIC N-SUBGROUP

- $\Delta(q) = q \cdot \prod_{N \geq 1} (1 q^N)^{24} = \sum_{N \geq 1} \epsilon(n) q^N$ DISCRIMINANT MODULAR FORM
- $G_{12}(q) = \frac{691}{65520} + \frac{5}{N21}\sigma_{11}(n)q^{n}$ EISENSTEIN SERIES

RAMANUJAN'S CONGRUENCE ('16)

 $2(p) \equiv 1 + p^{11} \mod 691$.

SERRE'S DEA ('72):

CODSTRUCT P-ADIC ANALYTIC FAMILIES OF MODULAR FORMS FROM THEIR 9-EXPANSION

f (q) = 20+21 q+22q2+... E Co [q], Vo(f) = infn (Vp(2n))

THE SPACE OF P-ADIC MODULAR FORMS IS COLECTION OF F(9) & CPL9] SUCH THAT

 $V_{P}(f(q)-f_{i}(q)) \longrightarrow \infty$ FOR $f_{i} \in M_{K_{i}}(SL_{Z}(Z),\overline{\mathbb{Q}})$ CLASSICAL MODULAR FORMS

P-ADIC FAMILY OF EISENSTEIN SERIES (P)5)

$$F(p-1)+k: (1-p^{k-1})B_k/k \equiv (1-p^{k-1})B_k/k' \mod p^{k+1}$$

CONSIDER
$$G_{k}^{(p)}(q) := (1 - p^{k-1}) \frac{-B_{k}}{2k} + \frac{5}{n \ge 1} \left(\frac{2}{p + d \ln} d^{k-1} \right) q^{n}$$

• IF
$$(P-1)+K:$$
 $G_{K}^{(P)}(q) \equiv G_{K}^{(P)}(q)$ mod P^{h+1}

LET
$$K \in \mathbb{Z}_p \times \mathbb{Z}/(p-1)\mathbb{Z}$$
, $O_{k-1}^{\sharp}(n) = \mathbb{Z}_{q} d^{k-1}$ $p-Aoic$ integer plain

$$G_{k}^{(p)} = \lim_{k \to \infty} G_{k}^{(p)} = \frac{1}{2} \sum_{n=1}^{\infty} (1-k) + \sum_{n\geq 1} \sigma_{k-1}^{*}(n) q^{n}$$
 is a p-ADIC Modular Form

TOWARDS A FINER DESCRIPTION

HECKE STRUCTURE

(CLASSICAL) MODULAR FORMS OF LEVEL N ARE EQUIPPED WI ACTION OF HECKE ALCEBRA

• Te
$$f(q) = \sum_{n \ge 0} a_{n} q^{n} + l^{k-2} \sum_{n \ge 0} a_{n} q^{ln}$$
 Ltn
• $U_{p}f(q) = \sum_{n \ge 0} a_{np} q^{n}$ PIN

•
$$U_P f(q) = \sum_{n \geq 0} a_{np} q^n$$

Up OPERATOR ON P-ADIC MODULAR FORMS HAS LARGE CONTINUOUS SPECTRUM

$$\lambda \in P \mathbb{Z}_{P}$$
, $f_{\lambda} := (1 - \lambda V_{P})^{\frac{1}{2}} (1 - V_{P} U_{P}) f$
 $U_{P} f_{\lambda} = \lambda f_{\lambda}$

PROBLEM: WE CADNOT DECOMPOSE P-ADIC MF IN FINITE LINEAR COMBINATION EIGENFORKS!

KATZ'S DEA ('72)

NTRODUCE P-ADIC GEOMETRIC FRAMEWORK:

OVERCOUNERGENT MODULAR FORMS

COMPLEX ANALYTIC VS SCHEMES

MODOLI SPACE OF EXCIPTIC CURVES WITH CYCLE P-SUBGREOP

COMPLEX PICTURE

XO(P) ITS COMPACTIFICATION IS RIEMADN SURFACE

SCHEME THEORETIC PICTURE

REPRESENTED BY SHOOTH SCHEME (P) OVER Z[4p] Rings - Sets R -> (E/R ELLIPTIC CURVE)

TAKE X. (P) HS COMPACTIFICATION, SHOOTH PROPER OVER Z[[1/P]]

DELIGNE - RAPAPORT MODEL: SEMISTABLE MODEL OVER Z

CODUECTION WITH MODULAR FORMS: L/Q FIELD EXTENSION KEZ

 $\leq_{2k}(\Gamma_0(P), L) = H^0(\times_0(P)_L, \Omega_{\times_0(P)_L}^{\otimes k})$ cosp forms of weight 2k

REM. TAKING MODULAR CURVE OVER CO WILL NOT ADD ANY NEW MODULAR FORM => NEED RIGID ANALYTIC SETTING

RIGID PICTURE: ORDWARY LOWS & SUPERSINGULAR ANDUCI

CONSIDER E/Fy ELLIPTIC CURVE OVER FLUTTE FIELD

 $E[p](\mathbb{F}_q) \simeq \mathbb{Z}/p\mathbb{Z}$ ORDINARY EC $E[p](\mathbb{F}_q) = \{0\}$ SUPERSIDERIAR EC

RIGID ANALYTIFICATION OF MODULAR CURVES

ACHTUNG: A PROPER TREATMENT

SHOCKO INVOLVE EXTRA STRUCTURE TO

AVOID PROBLEMS OF REPRESENT ABLITY

OF MODULI PROBLEMS.

THE AFFIDOID X IS CALLED ORDINARY LOCUS AND CORRESPONDS TO EXCIPTIC CURVES WITH ORDINARY REDUCTION

PEM P-ADIC MODULAR FORMS À LA SERRE (OF CLASSICAL WEIGHTS) CORRESPOND TO SECTIODS OVER ORDINARY LOCUS

 $S_{2k}^{(p)}(L) := \Omega_{v,y}^{0k}(X_L)$

L/Qp FIELD EXTENSION

CANONICAL SUBGROUP: LUBIN'S IDEA

SUPERSINGULAR ANNULI HAVE SPECIAL LOCUS ~ NOT TOO SUPERSINGULAR LOCUS

ASSOCIATE TO ELLIPTIC CURVE A CANONICAL SUBGROUP

WHERE DOES CANONICAL SUBGROUP COME FROM?

- \blacksquare ORDINARY LOCUS: $K_E = \ker(E[P] \longrightarrow E[P](\overline{F}_P)$
- SUPERSINGULAR LOCUS: NEWTON POLYGON OF [P] ON É FORMAL GROUP

DVERCOUVERGEUT MODULAR FORMS

g

CONSIDER WITH OPDINARY LOCUS TOGETHER WITH NOT-TOO- SUPERSINGUAR LOCUS

W bys / X FINITE DISJOINT CHION OF OPEN ANDOLI

AN OVERCONVERGENT P-ADIC MODULAR FORM IS A P-ADIC MODULAR FORM

THAT IS DEFINED ON W DTS (OVERCONVERGES IN PART OF SUPERSINGULAR LOCUS)

$$S_{2K}^{+}(L) = \Omega_{rig}^{st}(W_{L}^{urs})$$
, L/Q_{p} FIED EXTENSION.

REM CLASSICAL MODULAR FORMS OF LEVEL TO(P) NATURALLY SIT

OPERATOR: THE REASON EVERYTHING WORKS

GNEN BY GEOMETRIC CORRESPONDENCE

~ PRESERVES ORDINARY LOCUS NOT-TOO-55 LOCUS

THEOREM Up IS A CONTINUOUS BOONDED COMPACT OPERATOR ON SZK I.E. IMAGE OF UNIT BALL IS RELATIVELY COMPACT

SERRE AND DWORK ('62) PROVED FOLLOWING PROPERTIES OF THESE OPERATORS

- De IS LIMIT OF OPERATORS OF FINITE RANK
- Up HAS WELL DEFINED TRACE
- Up ADMITS A DISCRETE SPECTROM

$$|\lambda_1| \ge |\lambda_2| \ge \cdots \ge \cdots$$
 w/ $|\lambda_1| \longrightarrow 0$

AND SEQUENCE OF GENERALIZED EIGENFORMS &; SUCH THAT EVERY OVER CONVERGENT MF & ADMITS

$$f \sim Z \propto f$$
; ASYMPTOTIC EXPANSION $\left\| \int_{-\infty}^{h} f - \sum_{i \in K} x_{i} \int_{-\infty}^{n} f = O(\epsilon^{h}) \right\|$

III. COMPUTING UP- EIGENFUNCTIONS

GENUS O CASE

LET P BE 2,3,5,7 or 13.

$$EG P=2, j=\frac{(1+2^8 h_2)^3}{h}$$

$$h_{p}(z) = \left(\frac{\Delta(pz)}{\Delta(z)}\right)^{\frac{1}{p-1}}$$

 $h_p(z) = \left(\frac{\Delta(pz)}{\Delta(z)}\right)^{p-1}$ HAUPTHODUL IS CHIFORMIZER FOR $\chi_0(p)$

- = X ord (Cp) = { ze Cp U { 0}} | | hp(z) | < 1 } = B(0,1)

TWO RIGID P-ADIC DISCS CENTERED AT THE CUSP OO

WEIGHT O OVERCONVERGENT P-ADIC MODULAR FORMS CORRESPONDS TO LAURENT SERIES $f = a_0 + a_1 p'h_p + a_2 p''h_p^2 + \dots \in \mathbb{C}_p \llbracket p'h_p \rrbracket$, $r = \frac{12p}{p^2+1}$ with growing conditions on coefficients

JA ACTION ON HAUPTMODUL

$$U_{p}$$
 ACTION BY S_{0}^{+} (C) GIVEN BY U_{p} ACTION ON P^{rh} , $P^{2r}h^{2}$, $P^{3r}h^{3}$... $r = \frac{12 P}{P^{2}-4}$

Up h'= P; (h)

P; (x)
$$\in$$
 Cp [X] POCYNOMIAL COMPOTATIONALLY PRECISE

P; (h) CAN BE COMPUTED RECURSIVELY

$$V_{2}(O_{2}(i,i))_{ij} = \begin{pmatrix} 38 \\ 371116 \\ 91217719 \\ 71116 \\$$

$$U_2(h^n) = (48h + 4096h^2)U_p(h^{n-2}) + hU_p(h^{n-2})$$

THEOREM (BUZZARD - CALLEGARI, '05)

THE SLOPE SEQUENCE OF
$$U_2$$
 ON $S_2^+(\mathbb{F})$

IS GIVED BY

$$\left\{1 + 2V_2\left(\frac{(3n)!}{n!}\right)\right\}_{n=1,...}$$

CONSIDER P=2, LET f: EIGENFORMS FOR O_2 -OPERATOR, $O_2f:=\lambda:f:$ $\lambda:EC_2$ $V_2(\lambda_1) \leq V_2(\lambda_2) \leq V_2(\lambda_3) \leq \cdots$

CALLEGARI (13) OBSERVED THAT

9-EXPANSION OF \$2" APPEAR TO CONVERGE TO AN INFINITE SLOPE FORM

$$E_o^{[2]}(q) = \sum_{n \geq 1} \left(\sum_{2 \nmid d \mid n} d^{-1} \right) q^n$$

COMING FROM INTEGRAL OF P-DEPLETION OF A CLASSICAL MODULAR FORM

50 YEARS AFTER SERRE'S FIRST RESULTS, LIMITS OF 9-EXPANSIONS OF P-ADIC MODULAR FORMS REVEAL RICH STRUCTURES THAT REMAIN LARGELY MYSTERIOUS!