P-ADIC MODULAR FORMS & # THEIR GEOMETRY PAOLO BORDIGUOU, PhD STUDENT LEIDEN UNIVERSITY JULY 23 2025 SYMPAAN' 25 OI. INTRODUCTION: #### THREE PERSPECTIVES ON MODULAR FORKS #### COMPLEX ADALYTIC $$f:\mathcal{H}\longrightarrow \mathbb{C}$$ HOLOMORPHIC, AE \mathbb{Z} + EXTRA CONDITIONS #### GENERATING SERIES $$-G_{\kappa}(q) = -\frac{B_{\kappa}}{2\kappa} + \sum_{N \geq 1} O_{\kappa-1}(N)q^{N}, \qquad O_{\kappa-1}(N) = \sum_{1 \leq d \mid N} d^{k-1}, \qquad B_{\kappa} = -\kappa \geq (1-\kappa) \qquad \text{Essension Series}$$ $$O_{\kappa-1}(n) = \sum_{1 \le d \mid n} d^{k-1}$$ $B_{\kappa} =$ NUMBER THEOPETIC FLAVOUR $$- h(q)^{-1} = q^{\frac{1}{24}} \cdot \prod_{n \ge 1} (1 - q^n)^{-1} = q^{\frac{1}{24}} \cdot \sum_{n \ge 0} P(n)q^n \qquad P(n) = \# \{PARTITIONS \text{ OF } n\}$$ COMBINATORIAL FLAVOUR $$- \mathcal{L} \in \mathcal{S}_{2}\left(\Gamma_{0}(N), \mathcal{Q}\right) \qquad \mathcal{L}(q) = \frac{Z}{n \geq 1} \text{ an } q^{n}, \qquad \partial_{p} = P + 1 - \# E_{p}(\mathbb{F}_{p}) \qquad P \nmid N$$ GEOMETRIC FLAVOUR EX/Q ELLIPTIC CURVE ATTACHED TO & #### # GEONETRIC SECTION OF LINE BUNDLE E EXIPTIC CURVE CEELUZ CYCLE N-GROOP MODULI SPACE OF ELLIPTIC CURVES WI CYCLIC N-SUBGROUP - $\Delta(q) = q \cdot \prod_{N \geq 1} (1 q^N)^{24} = \sum_{N \geq 1} \epsilon(n) q^N$ DISCRIMINANT MODULAR FORM - $G_{12}(q) = \frac{691}{65520} + \frac{5}{N21}\sigma_{11}(n)q^{n}$ EISENSTEIN SERIES RAMANUJAN'S CONGRUENCE ('16) $2(p) \equiv 1 + p^{11} \mod 691$. #### SERRE'S DEA ('72): CODSTRUCT P-ADIC ANALYTIC FAMILIES OF MODULAR FORMS FROM THEIR 9-EXPANSION f (q) = 20+21 q+22q2+... E Co [q], Vo(f) = infn (Vp(2n)) THE SPACE OF P-ADIC MODULAR FORMS IS COLECTION OF F(9) & CPL9] SUCH THAT $V_{P}(f(q)-f_{i}(q)) \longrightarrow \infty$ FOR $f_{i} \in M_{K_{i}}(SL_{Z}(Z),\overline{\mathbb{Q}})$ CLASSICAL MODULAR FORMS ### P-ADIC FAMILY OF EISENSTEIN SERIES (P)5) $$F(p-1)+k: (1-p^{k-1})B_k/k \equiv (1-p^{k-1})B_k/k' \mod p^{k+1}$$ CONSIDER $$G_{k}^{(p)}(q) := (1 - p^{k-1}) \frac{-B_{k}}{2k} + \frac{5}{n \ge 1} \left(\frac{2}{p + d \ln} d^{k-1} \right) q^{n}$$ • IF $$(P-1)+K:$$ $G_{K}^{(P)}(q) \equiv G_{K}^{(P)}(q)$ mod P^{h+1} LET $$K \in \mathbb{Z}_p \times \mathbb{Z}/(p-1)\mathbb{Z}$$, $O_{k-1}^{\sharp}(n) = \mathbb{Z}_{q} d^{k-1}$ $p-Aoic$ integer plain $$G_{k}^{(p)} = \lim_{k \to \infty} G_{k}^{(p)} = \frac{1}{2} \sum_{n=1}^{\infty} (1-k) + \sum_{n\geq 1} \sigma_{k-1}^{*}(n) q^{n}$$ is a p-ADIC Modular Form ### TOWARDS A FINER DESCRIPTION #### # HECKE STRUCTURE (CLASSICAL) MODULAR FORMS OF LEVEL N ARE EQUIPPED WI ACTION OF HECKE ALCEBRA • Te $$f(q) = \sum_{n \ge 0} a_{n} q^{n} + l^{k-2} \sum_{n \ge 0} a_{n} q^{ln}$$ Ltn • $U_{p}f(q) = \sum_{n \ge 0} a_{np} q^{n}$ PIN • $$U_P f(q) = \sum_{n \geq 0} a_{np} q^n$$ Up OPERATOR ON P-ADIC MODULAR FORMS HAS LARGE CONTINUOUS SPECTRUM $$\lambda \in P \mathbb{Z}_{P}$$, $f_{\lambda} := (1 - \lambda V_{P})^{\frac{1}{2}} (1 - V_{P} U_{P}) f$ $U_{P} f_{\lambda} = \lambda f_{\lambda}$ PROBLEM: WE CADNOT DECOMPOSE P-ADIC MF IN FINITE LINEAR COMBINATION EIGENFORKS! #### KATZ'S DEA ('72) NTRODUCE P-ADIC GEOMETRIC FRAMEWORK: OVERCOUNERGENT MODULAR FORMS ### COMPLEX ANALYTIC VS SCHEMES MODOLI SPACE OF EXCIPTIC CURVES WITH CYCLE P-SUBGREOP #### COMPLEX PICTURE XO(P) ITS COMPACTIFICATION IS RIEMADN SURFACE #### SCHEME THEORETIC PICTURE REPRESENTED BY SHOOTH SCHEME (P) OVER Z[4p] Rings - Sets R -> (E/R ELLIPTIC CURVE) TAKE X. (P) HS COMPACTIFICATION, SHOOTH PROPER OVER Z[[1/P]] DELIGNE - RAPAPORT MODEL: SEMISTABLE MODEL OVER Z CODUECTION WITH MODULAR FORMS: L/Q FIELD EXTENSION KEZ $\leq_{2k}(\Gamma_0(P), L) = H^0(\times_0(P)_L, \Omega_{\times_0(P)_L}^{\otimes k})$ cosp forms of weight 2k REM. TAKING MODULAR CURVE OVER CO WILL NOT ADD ANY NEW MODULAR FORM => NEED RIGID ANALYTIC SETTING ### RIGID PICTURE: ORDWARY LOWS & SUPERSINGULAR ANDUCI CONSIDER E/Fy ELLIPTIC CURVE OVER FLUTTE FIELD $E[p](\mathbb{F}_q) \simeq \mathbb{Z}/p\mathbb{Z}$ ORDINARY EC $E[p](\mathbb{F}_q) = \{0\}$ SUPERSIDERIAR EC RIGID ANALYTIFICATION OF MODULAR CURVES ACHTUNG: A PROPER TREATMENT SHOCKO INVOLVE EXTRA STRUCTURE TO AVOID PROBLEMS OF REPRESENT ABLITY OF MODULI PROBLEMS. THE AFFIDOID X IS CALLED ORDINARY LOCUS AND CORRESPONDS TO EXCIPTIC CURVES WITH ORDINARY REDUCTION PEM P-ADIC MODULAR FORMS À LA SERRE (OF CLASSICAL WEIGHTS) CORRESPOND TO SECTIODS OVER ORDINARY LOCUS $S_{2k}^{(p)}(L) := \Omega_{v,y}^{0k}(X_L)$ L/Qp FIELD EXTENSION ### CANONICAL SUBGROUP: LUBIN'S IDEA SUPERSINGULAR ANNULI HAVE SPECIAL LOCUS ~ NOT TOO SUPERSINGULAR LOCUS ASSOCIATE TO ELLIPTIC CURVE A CANONICAL SUBGROUP WHERE DOES CANONICAL SUBGROUP COME FROM? - \blacksquare ORDINARY LOCUS: $K_E = \ker(E[P] \longrightarrow E[P](\overline{F}_P)$ - SUPERSINGULAR LOCUS: NEWTON POLYGON OF [P] ON É FORMAL GROUP ## DVERCOUVERGEUT MODULAR FORMS g CONSIDER WITH OPDINARY LOCUS TOGETHER WITH NOT-TOO- SUPERSINGUAR LOCUS W bys / X FINITE DISJOINT CHION OF OPEN ANDOLI AN OVERCONVERGENT P-ADIC MODULAR FORM IS A P-ADIC MODULAR FORM THAT IS DEFINED ON W DTS (OVERCONVERGES IN PART OF SUPERSINGULAR LOCUS) $$S_{2K}^{+}(L) = \Omega_{rig}^{st}(W_{L}^{urs})$$, L/Q_{p} FIED EXTENSION. REM CLASSICAL MODULAR FORMS OF LEVEL TO(P) NATURALLY SIT OPERATOR: THE REASON EVERYTHING WORKS GNEN BY GEOMETRIC CORRESPONDENCE ~ PRESERVES ORDINARY LOCUS NOT-TOO-55 LOCUS THEOREM Up IS A CONTINUOUS BOONDED COMPACT OPERATOR ON SZK I.E. IMAGE OF UNIT BALL IS RELATIVELY COMPACT SERRE AND DWORK ('62) PROVED FOLLOWING PROPERTIES OF THESE OPERATORS - De IS LIMIT OF OPERATORS OF FINITE RANK - Up HAS WELL DEFINED TRACE - Up ADMITS A DISCRETE SPECTROM $$|\lambda_1| \ge |\lambda_2| \ge \cdots \ge \cdots$$ w/ $|\lambda_1| \longrightarrow 0$ AND SEQUENCE OF GENERALIZED EIGENFORMS &; SUCH THAT EVERY OVER CONVERGENT MF & ADMITS $$f \sim Z \propto f$$; ASYMPTOTIC EXPANSION $\left\| \int_{-\infty}^{h} f - \sum_{i \in K} x_{i} \int_{-\infty}^{n} f = O(\epsilon^{h}) \right\|$ # III. COMPUTING UP- EIGENFUNCTIONS #### GENUS O CASE LET P BE 2,3,5,7 or 13. $$EG P=2, j=\frac{(1+2^8 h_2)^3}{h}$$ $$h_{p}(z) = \left(\frac{\Delta(pz)}{\Delta(z)}\right)^{\frac{1}{p-1}}$$ $h_p(z) = \left(\frac{\Delta(pz)}{\Delta(z)}\right)^{p-1}$ HAUPTHODUL IS CHIFORMIZER FOR $\chi_0(p)$ - = X ord (Cp) = { ze Cp U { 0}} | | hp(z) | < 1 } = B(0,1) TWO RIGID P-ADIC DISCS CENTERED AT THE CUSP OO WEIGHT O OVERCONVERGENT P-ADIC MODULAR FORMS CORRESPONDS TO LAURENT SERIES $f = a_0 + a_1 p'h_p + a_2 p''h_p^2 + \dots \in \mathbb{C}_p \llbracket p'h_p \rrbracket$, $r = \frac{12p}{p^2+1}$ with growing conditions on coefficients ### JA ACTION ON HAUPTMODUL $$U_{p}$$ ACTION BY S_{0}^{+} (C) GIVEN BY U_{p} ACTION ON P^{rh} , $P^{2r}h^{2}$, $P^{3r}h^{3}$... $r = \frac{12 P}{P^{2}-4}$ Up h'= P; (h) P; (x) $$\in$$ Cp [X] POCYNOMIAL COMPOTATIONALLY PRECISE #### P; (h) CAN BE COMPUTED RECURSIVELY $$V_{2}(O_{2}(i,i))_{ij} = \begin{pmatrix} 38 \\ 371116 \\ 91217719 \\ 71116 \\$$ $$U_2(h^n) = (48h + 4096h^2)U_p(h^{n-2}) + hU_p(h^{n-2})$$ THEOREM (BUZZARD - CALLEGARI, '05) THE SLOPE SEQUENCE OF $$U_2$$ ON $S_2^+(\mathbb{F})$ IS GIVED BY $$\left\{1 + 2V_2\left(\frac{(3n)!}{n!}\right)\right\}_{n=1,...}$$ CONSIDER P=2, LET f: EIGENFORMS FOR O_2 -OPERATOR, $O_2f:=\lambda:f:$ $\lambda:EC_2$ $V_2(\lambda_1) \leq V_2(\lambda_2) \leq V_2(\lambda_3) \leq \cdots$ CALLEGARI (13) OBSERVED THAT 9-EXPANSION OF \$2" APPEAR TO CONVERGE TO AN INFINITE SLOPE FORM $$E_o^{[2]}(q) = \sum_{n \geq 1} \left(\sum_{2 \nmid d \mid n} d^{-1} \right) q^n$$ COMING FROM INTEGRAL OF P-DEPLETION OF A CLASSICAL MODULAR FORM 50 YEARS AFTER SERRE'S FIRST RESULTS, LIMITS OF 9-EXPANSIONS OF P-ADIC MODULAR FORMS REVEAL RICH STRUCTURES THAT REMAIN LARGELY MYSTERIOUS!